Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/16/10.1063/1.3496999
1.
1.C. Dreyfus, A. Aouadi, J. Gapinski, M. Matos-Lopes, W. Steffen, A. Patkowski, and R. M. Pick, Phys. Rev. E 68, 011204 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.011204
2.
2.C. Dreyfus, A. Le Grand, J. Gapinski, W. Steffen, and A. Patkowski, Eur. Phys. J. B 42, 309 (2004).
http://dx.doi.org/10.1140/epjb/e2004-00386-3
3.
3.R. Casalini and C. M. Roland, Phys. Rev. E 69, 062501 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.062501
4.
4.R. Casalini and C. M. Roland, Phys. Rev. B 71, 014210 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014210
5.
5.C. Alba-Simionesco, A. Cailliaux, A. Alegria, and G. Tarjus, Europhys. Lett. 68, 58 (2004).
http://dx.doi.org/10.1209/epl/i2004-10214-6
6.
6.A. Reiser, G. Kasper, and S. Hunklinger, Phys. Rev. B 72, 094204 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.094204
7.
7.S. Pawlus, R. Casalini, C. M. Roland, M. Paluch, S. J. Rzoska, and J. Ziolo, Phys. Rev. E 70, 061501 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.061501
8.
8.R. Casalini, U. Mohanty, and C. M. Roland, J. Chem. Phys. 125, 014505 (2006).
http://dx.doi.org/10.1063/1.2206582
9.
9.R. Casalini and C. M. Roland, J. Non-Cryst. Solids 353, 3936 (2007).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.03.026
10.
10.C. M. Roland, in Current Topics in Elastomers Research, edited by A. K. Bhowmick (CRC, Boca Raton, FL/Taylor & Francis, London, 2008), Chap. 24.
11.
11.C. M. Roland, S. Bair, and R. Casalini, J. Chem. Phys. 125, 124508 (2006).
http://dx.doi.org/10.1063/1.2346679
12.
12.C. Alba-Simionesco and G. Tarjus, J. Non-Cryst. Solids 352, 4888 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.05.037
13.
13.U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015701
14.
14.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008);
http://dx.doi.org/10.1063/1.2982247
14.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys.129, 184508 (2008).
http://dx.doi.org/10.1063/1.2982249
15.
15.D. Coslovich and C. M. Roland, J. Phys. Chem. B 112, 1329 (2008).
http://dx.doi.org/10.1021/jp710457e
16.
16.D. Coslovich and C. M. Roland, J. Chem. Phys. 130, 014508 (2009).
http://dx.doi.org/10.1063/1.3054635
17.
17.T. B. Schrøder, N. P. Bailey, U. R. Pedersen, N. Gnan, and J. C. Dyre, J. Chem. Phys. 131, 234503 (2009).
http://dx.doi.org/10.1063/1.3265955
18.
18.A. Grzybowski, M. Paluch, and K. Grzybowska, J. Phys. Chem. B 113, 7419 (2009).
http://dx.doi.org/10.1021/jp9010235
19.
19.M. Paluch, S. Haracz, A. Grzybowski, M. Mierzwa, J. Pionteck, A. Rivera-Calzada, and C. Leon, J. Phys. Chem. Lett. 1, 987 (2010).
http://dx.doi.org/10.1021/jz9004653
20.
20.A. Grzybowski, M. Paluch, and K. Grzybowska, Phys. Rev. E 82, 013501 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.013501
21.
21.V. Yu. Bardik and K. S. Shakun, Ukr. J. Phys. 50, 404 (2005).
22.
22.V. Yu. Bardic, N. P. Malomuzh, and V. M. Sysoev, J. Mol. Liq. 120, 27 (2005).
http://dx.doi.org/10.1016/j.molliq.2004.07.020
23.
23.L. J. Lewis and G. Wahnström, Phys. Rev. E 50, 3865 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.3865
24.
24.S. Mossa, E. La Nave, H. E. Stanley, C. Donati, F. Sciortino, and P. Tartaglia, Phys. Rev. E 65, 041205 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.041205
25.
25.G. Tarjus, D. Kivelson, S. Mossa, and C. Alba-Simionesco, J. Chem. Phys. 120, 6135 (2004).
http://dx.doi.org/10.1063/1.1649732
26.
26.I. Avramov, J. Non-Cryst. Solids 262, 258 (2000).
http://dx.doi.org/10.1016/S0022-3093(99)00712-7
27.
27.See supplementary material at http://dx.oi.org/10.1063/1.3496999 for a more detailed description of the experimental test.[Supplementary Material]
28.
28.M. Naoki, H. Endou, and K. Matsumoto, J. Phys. Chem. 91, 4169 (1987).
http://dx.doi.org/10.1021/j100299a044
29.
29.M. Naoki and S. Koeda, J. Phys. Chem. 93, 948 (1989).
http://dx.doi.org/10.1021/j100339a078
30.
30.L. Comez, S. Corezzi, and D. Fioretto, Philos. Mag. 84, 1521 (2004).
http://dx.doi.org/10.1080/14786430310001644291
31.
31.M. Paluch, R. Casalini, and C. M. Roland, Phys. Rev. B 66, 092202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.092202
32.
32.M. Paluch, R. Casalini, A. Best, and A. Patkowski, J. Chem. Phys. 117, 7624 (2002).
http://dx.doi.org/10.1063/1.1510115
33.
33.R. Casalini, M. Paluch, and C. M. Roland, J. Chem. Phys. 118, 5701 (2003).
http://dx.doi.org/10.1063/1.1564046
34.
34.M. Paluch, C. M. Roland, and A. Best, J. Chem. Phys. 117, 1188 (2002).
http://dx.doi.org/10.1063/1.1485965
35.
35.R. Casalini, M. Paluch, and C. M. Roland, J. Phys.: Condens. Matter 15, S859 (2003).
http://dx.doi.org/10.1088/0953-8984/15/11/310
36.
36.S. Hensel-Bielowka, J. Ziolo, M. Paluch, and C. M. Roland, J. Chem. Phys. 117, 2317 (2002).
http://dx.doi.org/10.1063/1.1488593
37.
37.M. Paluch, C. M. Roland, R. Casalini, G. Meier, and A. Patkowski, J. Chem. Phys. 118, 4578 (2003).
http://dx.doi.org/10.1063/1.1545449
38.
38.F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys. 102, 6251 (1995).
http://dx.doi.org/10.1063/1.469071
39.
39.A. Grzybowski, S. Haracz, M. Paluch, and K. Grzybowska, J. Phys. Chem. B 114, 11544 (2010).
http://dx.doi.org/10.1021/jp104080f
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/16/10.1063/1.3496999
Loading
/content/aip/journal/jcp/133/16/10.1063/1.3496999
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/16/10.1063/1.3496999
2010-10-25
2016-09-29

Abstract

In this communication, we provide a recipe for a consistent relation between dynamic scaling and thermodynamic properties well-grounded by the same intermolecular generalized Lennard-Jones potential, which is derived by using an essentially modified Avramov model within the framework of the “thermodynamic scaling” idea. This relation is experimentally verified very well for supercooled van der Waals liquids, and consequently, it can be a good basis for a proper universal description of molecular dynamics and thermodynamics of viscoussystems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/16/1.3496999.html;jsessionid=FMA4h4Dxh75MdP_IBIzAGdp5.x-aip-live-06?itemId=/content/aip/journal/jcp/133/16/10.1063/1.3496999&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/16/10.1063/1.3496999&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/16/10.1063/1.3496999'
Right1,Right2,Right3,