Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. A. Taatjes, N. Hansen, A. Mcllroy, J. A. Miller, J. P. Senosiain, S. J. Klippenstein, F. Qi, L. Sheng, Y. Zhang, T. A. Cool, J. Wang, P. R. Westmoreland, M. E. Law, T. Kasper, and K. Kohse-Höinghaus, Science 308, 1887 (2005).
2.C. A. Taatjes, N. Hansen, J. A. Miller, T. A. Cool, J. Wang, P. R. Westmoreland, M. E. Law, T. Kasper, and K. Kohse-Höinghaus, J. Phys. Chem. A 110, 3254 (2006).
3.H. R. Zhang, L. K. Huynh, N. Kungwan, S. Zhang, Z. Yang, T. Truong, E. Eddings, and A. Sarofim, Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem. 51, 229 (2006).
4.G. da Silva, C. -H. Kim, and J. W. Bozzelli, J. Phys. Chem. A 110, 7925 (2006).
5.M. Ganot, Y. Yair, C. Price, B. Ziv, Y. Sherez, E. Greenberg, A. Devir, and R. Yaniv, Geophys. Res. Lett. 34, L12801 (2007).
6.K. Hirao, Chem. Phys. Lett. 190, 374 (1992).
7.K. Hirao, Int. J. Quantum Chem., Quantum Chem. Symp. 44, 517 (1992).
8.B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys. 48, 157 (1980).
9.P. E. M. Siegbahn, J. Almlöf, A. Heiberg, and B. O. Roos, J. Chem. Phys. 74, 2384 (1981).
10.H. -J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985);
10.P. J. Knowles and H. -J. Werner, Chem. Phys. Lett. 115, 259 (1985).
11.B. O. Roos, Adv. Chem. Phys. 69, 399 (1987).
12.L. M. Cheung, K. R. Sundberg, and K. Ruedenberg, Int. J. Quantum Chem. 16, 1103 (1979);
12.K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert, Chem. Phys. 71, 41 (1982).
13.M. W. Schmidt and M. S. Gordon, Annu. Rev. Phys. Chem. 49, 233 (1998).
14.O. Tishchenko, J. J. Zheng, and D. G. Truhlar, J. Chem. Theory Comput. 4, 1208 (2008).
15.B. A. Ellingson, D. P. Theis, O. Tishchenko, J. Zheng, and D. G. Truhlar, J. Phys. Chem. A 111, 13554 (2007).
16.O. Roberto-Neto, F. B. Machado, and D. G. Truhlar, J. Chem. Phys. 111, 10046 (1999).
17.Y. Kobayashi, M. Kamiya, and K. Hirao, Chem. Phys. Lett. 319, 695 (2000).
18.O. Tishchenko, E. S. Kryachko, C. Vinckier, and M. T. Nguyen, Chem. Phys. Lett. 363, 550 (2002).
19.O. Tishchenko, C. Vinckier, and M. T. Nguyen, J. Phys. Chem. A 108, 1268 (2004).
20.O. Tishchenko, C. Vinckier, A. Ceulemans, and M. T. Nguyen, J. Phys. Chem. A 109, 6099 (2005).
21.J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 3, 569 (2007).
22.K. Andersson, P. -A. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
23.H. -J. Werner, Mol. Phys. 89, 645 (1996);
23.P. Celani and H. -J. Werner, J. Chem. Phys. 112, 5546 (2000).
24.N. Marchand, P. Jimeno, J. C. Rayez, and D. Liotard, J. Phys. Chem. 101, 6077 (1997).
25.P. R. Schreiner, J. Am. Chem. Soc. 120, 4184 (1998).
26.M. T. Nguyen, A. K. Chandra, S. Sakai, and K. Morokuma, J. Org. Chem. 64, 65 (1999).
27.P. N. Skancke, D. A. Hrovat, and W. T. Borden, J. Phys. Chem. A 103, 4043 (1999).
28.F. Sevin and M. L. McKee, J. Am. Chem. Soc. 123, 4591 (2001).
29.W. T. G. Johnson, M. B. Sullivan, and C. J. Cramer, Int. J. Quantum Chem. 85, 492 (2001).
30.A. G. Leach and K. N. Houk, Org. Biomol. Chem. 1, 1389 (2003).
31.V. Guner, K. S. Khuong, A. G. Leach, P. S. Lee, M. D. Bartberger, and K. N. Houk, J. Phys. Chem. 107, 11445 (2003).
32.W. H. Lam, P. P. Gaspar, D. A. Hrovat, D. A. Trieber II, E. R. Davidson, and W. T. Borden, J. Am. Chem. Soc. 127, 9886 (2005).
33.R. Izsák, M. Szori, P. J. Knowles, and B. Viskolcz, J. Chem. Theory Comput. 5, 2313 (2009).
34.L. B. Harding, S. J. Klippenstein, and A. W. Jasper, Phys. Chem. Chem. Phys. 9, 4055 (2007).
35.L. B. Harding, S. J. Klippenstein, and J. A. Miller, J. Phys. Chem. 112, 522 (2008).
36.R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
37.M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
38.L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 114, 108 (2001).
39.Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).
40.M. J. Frisch, G. W. Trucks, H. G. Schlegel et al., GAUSSIAN 03, Revision C.01, Gaussian, Inc., Pittsburgh, PA, 1998.
41.Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
42.T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
43.See supplementary material at for geometries of all optimized structures.[Supplementary Material]
44.Y. Zhao, O. Tishchenko, J. R. Gour, W. Lei, J. J. Lutz, P. Piecuch, and D. G. Truhlar, J. Phys. Chem. A 113, 5786 (2009).
45.R. Zhu and M. C. Lin, PhysChemComm 4, 106 (2001);
45.M. Liessmann, B. Hansmann, P. G. Blachly, J. S. Francisco, and B. Abel, J. Phys. Chem. 113, 7570 (2009);
45.J. S. Francisco and W. Eisfeld, J. Phys. Chem. 113, 7593 (2009).
46.B. A. Fernandez-Ramos, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and T. R. Cundari (Wiley-VCH, Hoboken, 2007), Vol. 23, pp. 125232.
47.M. H. Mok and J. C. Polanyi, J. Chem. Phys. 51, 1451 (1969).
48.C. A. Parr and D. G. Truhlar, J. Phys. Chem. 75, 1844 (1971).
49.G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955).

Data & Media loading...


Article metrics loading...



We find high multireference character for abstraction of H from the OH group of ethenol (also called vinyl alcohol); therefore we adopt a multireference approach to calculate barrier heights for the various possible reaction channels of . The relative barrier heights of ten possible saddle points for reaction of OH with ethenol are predicted by multireference Møller–Plesset perturbation theory with active spaces based on correlated participating orbitals (CPOs) and CPO plus a correlated orbital . Six barrier heights for abstracting H from a bond range from 3.1 to 7.7 kcal/mol, two barrier heights for abstracting H from an bond are both 6.0 kcal/mol, and two barrier heights for OH addition to the double bond are −1.8 and −2.8 kcal/mol. Thus we expect abstraction at high-temperature and addition at low temperature. The factor that determines which H is most favorable to abstract is an internal hydrogen bond that constitutes part of a six-membered ring at one of the abstraction saddle points; the hydrogen bond contributes about 3 kcal/mol stabilization.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd