Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/2/10.1063/1.3455996
1.
1.C. A. Taatjes, N. Hansen, A. Mcllroy, J. A. Miller, J. P. Senosiain, S. J. Klippenstein, F. Qi, L. Sheng, Y. Zhang, T. A. Cool, J. Wang, P. R. Westmoreland, M. E. Law, T. Kasper, and K. Kohse-Höinghaus, Science 308, 1887 (2005).
http://dx.doi.org/10.1126/science.1112532
2.
2.C. A. Taatjes, N. Hansen, J. A. Miller, T. A. Cool, J. Wang, P. R. Westmoreland, M. E. Law, T. Kasper, and K. Kohse-Höinghaus, J. Phys. Chem. A 110, 3254 (2006).
http://dx.doi.org/10.1021/jp0547313
3.
3.H. R. Zhang, L. K. Huynh, N. Kungwan, S. Zhang, Z. Yang, T. Truong, E. Eddings, and A. Sarofim, Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem. 51, 229 (2006).
4.
4.G. da Silva, C. -H. Kim, and J. W. Bozzelli, J. Phys. Chem. A 110, 7925 (2006).
http://dx.doi.org/10.1021/jp0602878
5.
5.M. Ganot, Y. Yair, C. Price, B. Ziv, Y. Sherez, E. Greenberg, A. Devir, and R. Yaniv, Geophys. Res. Lett. 34, L12801 (2007).
http://dx.doi.org/10.1029/2007GL029258
6.
6.K. Hirao, Chem. Phys. Lett. 190, 374 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85354-D
7.
7.K. Hirao, Int. J. Quantum Chem., Quantum Chem. Symp. 44, 517 (1992).
http://dx.doi.org/10.1002/qua.560440847
8.
8.B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys. 48, 157 (1980).
http://dx.doi.org/10.1016/0301-0104(80)80045-0
9.
9.P. E. M. Siegbahn, J. Almlöf, A. Heiberg, and B. O. Roos, J. Chem. Phys. 74, 2384 (1981).
http://dx.doi.org/10.1063/1.441359
10.
10.H. -J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985);
http://dx.doi.org/10.1063/1.448627
10.P. J. Knowles and H. -J. Werner, Chem. Phys. Lett. 115, 259 (1985).
http://dx.doi.org/10.1016/0009-2614(85)80025-7
11.
11.B. O. Roos, Adv. Chem. Phys. 69, 399 (1987).
http://dx.doi.org/10.1002/9780470142943.ch7
12.
12.L. M. Cheung, K. R. Sundberg, and K. Ruedenberg, Int. J. Quantum Chem. 16, 1103 (1979);
http://dx.doi.org/10.1002/qua.560160512
12.K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, and S. T. Elbert, Chem. Phys. 71, 41 (1982).
http://dx.doi.org/10.1016/0301-0104(82)87004-3
13.
13.M. W. Schmidt and M. S. Gordon, Annu. Rev. Phys. Chem. 49, 233 (1998).
http://dx.doi.org/10.1146/annurev.physchem.49.1.233
14.
14.O. Tishchenko, J. J. Zheng, and D. G. Truhlar, J. Chem. Theory Comput. 4, 1208 (2008).
http://dx.doi.org/10.1021/ct800077r
15.
15.B. A. Ellingson, D. P. Theis, O. Tishchenko, J. Zheng, and D. G. Truhlar, J. Phys. Chem. A 111, 13554 (2007).
http://dx.doi.org/10.1021/jp077379x
16.
16.O. Roberto-Neto, F. B. Machado, and D. G. Truhlar, J. Chem. Phys. 111, 10046 (1999).
http://dx.doi.org/10.1063/1.480356
17.
17.Y. Kobayashi, M. Kamiya, and K. Hirao, Chem. Phys. Lett. 319, 695 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00202-5
18.
18.O. Tishchenko, E. S. Kryachko, C. Vinckier, and M. T. Nguyen, Chem. Phys. Lett. 363, 550 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01248-4
19.
19.O. Tishchenko, C. Vinckier, and M. T. Nguyen, J. Phys. Chem. A 108, 1268 (2004).
http://dx.doi.org/10.1021/jp0307295
20.
20.O. Tishchenko, C. Vinckier, A. Ceulemans, and M. T. Nguyen, J. Phys. Chem. A 109, 6099 (2005).
http://dx.doi.org/10.1021/jp050466+
21.
21.J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 3, 569 (2007).
http://dx.doi.org/10.1021/ct600281g
22.
22.K. Andersson, P. -A. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
http://dx.doi.org/10.1063/1.462209
23.
23.H. -J. Werner, Mol. Phys. 89, 645 (1996);
23.P. Celani and H. -J. Werner, J. Chem. Phys. 112, 5546 (2000).
http://dx.doi.org/10.1063/1.481132
24.
24.N. Marchand, P. Jimeno, J. C. Rayez, and D. Liotard, J. Phys. Chem. 101, 6077 (1997).
25.
25.P. R. Schreiner, J. Am. Chem. Soc. 120, 4184 (1998).
http://dx.doi.org/10.1021/ja973591a
26.
26.M. T. Nguyen, A. K. Chandra, S. Sakai, and K. Morokuma, J. Org. Chem. 64, 65 (1999).
http://dx.doi.org/10.1021/jo980723p
27.
27.P. N. Skancke, D. A. Hrovat, and W. T. Borden, J. Phys. Chem. A 103, 4043 (1999).
http://dx.doi.org/10.1021/jp9838745
28.
28.F. Sevin and M. L. McKee, J. Am. Chem. Soc. 123, 4591 (2001).
http://dx.doi.org/10.1021/ja010138x
29.
29.W. T. G. Johnson, M. B. Sullivan, and C. J. Cramer, Int. J. Quantum Chem. 85, 492 (2001).
http://dx.doi.org/10.1002/qua.1518
30.
30.A. G. Leach and K. N. Houk, Org. Biomol. Chem. 1, 1389 (2003).
http://dx.doi.org/10.1039/b300285c
31.
31.V. Guner, K. S. Khuong, A. G. Leach, P. S. Lee, M. D. Bartberger, and K. N. Houk, J. Phys. Chem. 107, 11445 (2003).
32.
32.W. H. Lam, P. P. Gaspar, D. A. Hrovat, D. A. Trieber II, E. R. Davidson, and W. T. Borden, J. Am. Chem. Soc. 127, 9886 (2005).
http://dx.doi.org/10.1021/ja050891g
33.
33.R. Izsák, M. Szori, P. J. Knowles, and B. Viskolcz, J. Chem. Theory Comput. 5, 2313 (2009).
http://dx.doi.org/10.1021/ct900133v
34.
34.L. B. Harding, S. J. Klippenstein, and A. W. Jasper, Phys. Chem. Chem. Phys. 9, 4055 (2007).
http://dx.doi.org/10.1039/b705390h
35.
35.L. B. Harding, S. J. Klippenstein, and J. A. Miller, J. Phys. Chem. 112, 522 (2008).
36.
36.R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
37.
37.M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
38.
38.L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 114, 108 (2001).
http://dx.doi.org/10.1063/1.1321305
39.
39.Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).
http://dx.doi.org/10.1021/ct0502763
40.
40.M. J. Frisch, G. W. Trucks, H. G. Schlegel et al., GAUSSIAN 03, Revision C.01, Gaussian, Inc., Pittsburgh, PA, 1998.
41.
41.Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
http://dx.doi.org/10.1007/s00214-007-0310-x
42.
42.T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
43.
43.See supplementary material at http://dx.doi.org/10.1063/1.3455996 for geometries of all optimized structures.[Supplementary Material]
44.
44.Y. Zhao, O. Tishchenko, J. R. Gour, W. Lei, J. J. Lutz, P. Piecuch, and D. G. Truhlar, J. Phys. Chem. A 113, 5786 (2009).
http://dx.doi.org/10.1021/jp811054n
45.
45.R. Zhu and M. C. Lin, PhysChemComm 4, 106 (2001);
http://dx.doi.org/10.1039/b107602g
45.M. Liessmann, B. Hansmann, P. G. Blachly, J. S. Francisco, and B. Abel, J. Phys. Chem. 113, 7570 (2009);
45.J. S. Francisco and W. Eisfeld, J. Phys. Chem. 113, 7593 (2009).
46.
46.B. A. Fernandez-Ramos, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and T. R. Cundari (Wiley-VCH, Hoboken, 2007), Vol. 23, pp. 125232.
http://dx.doi.org/10.1002/9780470116449.ch3
47.
47.M. H. Mok and J. C. Polanyi, J. Chem. Phys. 51, 1451 (1969).
http://dx.doi.org/10.1063/1.1672195
48.
48.C. A. Parr and D. G. Truhlar, J. Phys. Chem. 75, 1844 (1971).
http://dx.doi.org/10.1021/j100681a015
49.
49.G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955).
http://dx.doi.org/10.1021/ja01607a027
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/2/10.1063/1.3455996
Loading
/content/aip/journal/jcp/133/2/10.1063/1.3455996
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/2/10.1063/1.3455996
2010-07-14
2016-12-02

Abstract

We find high multireference character for abstraction of H from the OH group of ethenol (also called vinyl alcohol); therefore we adopt a multireference approach to calculate barrier heights for the various possible reaction channels of . The relative barrier heights of ten possible saddle points for reaction of OH with ethenol are predicted by multireference Møller–Plesset perturbation theory with active spaces based on correlated participating orbitals (CPOs) and CPO plus a correlated orbital . Six barrier heights for abstracting H from a bond range from 3.1 to 7.7 kcal/mol, two barrier heights for abstracting H from an bond are both 6.0 kcal/mol, and two barrier heights for OH addition to the double bond are −1.8 and −2.8 kcal/mol. Thus we expect abstraction at high-temperature and addition at low temperature. The factor that determines which H is most favorable to abstract is an internal hydrogen bond that constitutes part of a six-membered ring at one of the abstraction saddle points; the hydrogen bond contributes about 3 kcal/mol stabilization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/2/1.3455996.html;jsessionid=dUqeTGGBuBqAvwhVaIzy4zT-.x-aip-live-02?itemId=/content/aip/journal/jcp/133/2/10.1063/1.3455996&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/2/10.1063/1.3455996&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/2/10.1063/1.3455996'
Right1,Right2,Right3,