Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/21/10.1063/1.3509778
1.
1.M. Knickelbein, Annu. Rev. Phys. Chem. 50, 79 (1999).
http://dx.doi.org/10.1146/annurev.physchem.50.1.79
2.
2.J. A. Alonso, Chem. Rev. 100, 637 (2000).
http://dx.doi.org/10.1021/cr980391o
3.
3.P. B. Armentrout, Annu. Rev. Phys. Chem. 52, 423 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.423
4.
4.A. J. Cox, J. G. Louderback, and L. A. Bloomfield, Phys. Rev. Lett. 71, 923 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.923
5.
5.A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield, Phys. Rev. B 49, 12295 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.12295
6.
6.M. K. Beyer and M. B. Knickelbein, J. Chem. Phys. 126, 104301 (2007).
http://dx.doi.org/10.1063/1.2698320
7.
7.M. R. Zakin, D. M. Cox, and A. Kaldor, J. Chem. Phys. 89, 1201 (1988).
http://dx.doi.org/10.1063/1.455234
8.
8.C. Berg, M. K. Beyer, T. Schindler, G. Niedner-Schatteburg, and V. E. Bondybey, J. Chem. Phys. 104, 7940 (1996).
http://dx.doi.org/10.1063/1.471510
9.
9.G. Albert, C. Berg, M. K. Beyer, U. Achatz, S. Joos, G. Niedner-Schatteburg, and V. E. Bondybey, Chem. Phys. Lett. 268, 235 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00202-9
10.
10.C. Berg, M. K. Beyer, U. Achatz, S. Joos, G. Niedner-Schatteburg, and V. E. Bondybey, J. Chem. Phys. 108, 5398 (1998).
http://dx.doi.org/10.1063/1.475972
11.
11.I. Balteanu, O. Balaj, B. Fox-Beyer, P. Rodrigues, M. Barros, A. Moutinho, M. Costa, M. Beyer, and V. Bondybey, Organometallics 23, 1978 (2004).
http://dx.doi.org/10.1021/om049946y
12.
12.M. S. Ford, M. L. Anderson, M. P. Barrow, D. P. Woodruff, T. Drewello, P. J. Derrick, and S. R. Mackenzie, Phys. Chem. Chem. Phys. 7, 975 (2005).
http://dx.doi.org/10.1039/b415414b
13.
13.C. Adlhart and E. Uggerud, J. Chem. Phys. 123, 214709 (2005).
http://dx.doi.org/10.1063/1.2131066
14.
14.C. Adlhart and E. Uggerud, Int. J. Mass Spectrom. 249, 191 (2006).
http://dx.doi.org/10.1016/j.ijms.2005.12.032
15.
15.M. L. Anderson, M. S. Ford, P. J. Derrick, T. Drewello, D. P. Woodruff, and S. R. Mackenzie, J. Phys. Chem. A 110, 10992 (2006).
http://dx.doi.org/10.1021/jp062178z
16.
16.D. Harding, M. S. Ford, T. R. Walsh, and S. R. Mackenzie, Phys. Chem. Chem. Phys. 9, 2130 (2007).
http://dx.doi.org/10.1039/b618299b
17.
17.B. Reddy, S. Nayak, S. Khanna, B. Rao, and P. Jena, Phys. Rev. B 59, 5214 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5214
18.
18.L. Wang and Q. Ge, Chem. Phys. Lett. 366, 368 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01577-4
19.
19.T. Futschek, M. Marsman, and J. Hafner, J. Phys.: Condens. Matter. 17, 5927 (2005).
http://dx.doi.org/10.1088/0953-8984/17/38/001
20.
20.V. Bertin, R. Lopez-Rendón, G. del Angel, E. Poulain, R. Avilés, and V. Uc-Rosas, Int. J. Quantum Chem. 110, 1152 (2010).
21.
21.Y.-C. Bae, H. Osanai, V. Kumar, and Y. Kawazoe, Phys. Rev. B 70, 195413 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195413
22.
22.Y.-C. Bae, V. Kumar, H. Osanai, and Y. Kawazoe, Phys. Rev. B 72, 125427 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125427
23.
23.F. Aguilera-Granja, L. C. Balbás, and A. Vega, J. Phys. Chem. A 113, 13483 (2009).
http://dx.doi.org/10.1021/jp905188t
24.
24.L.-L. Wang and D. D. Johnson, Phys. Rev. B 75, 235405 (2007).
25.
25.L.-L. Wang and D. D. Johnson, J. Phys. Chem. B 109, 23113 (2005).
http://dx.doi.org/10.1021/jp0555347
26.
26.Y. Sun, R. Fournier, and M. Zhang, Phys. Rev. A 79, 043202 (2009).
27.
27.J. P. Chou, H. Y. T. Chen, C. R. Hsing, C. M. Chang, C. Cheng, and C. M. Wei, Phys. Rev. B 80, 165412 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165412
28.
28.D. J. Wales, M. A. Miller, and T. R. Walsh, Nature (London) 394, 758 (1998).
http://dx.doi.org/10.1038/29487
29.
29.H. Wang, H. Haouari, R. Craig, Y. Liu, J. R. Lombardi, and D. M. Lindsay, J. Chem. Phys. 106, 2101 (1997).
http://dx.doi.org/10.1063/1.473344
30.
30.J. D. Langenberg and M. D. Morse, J. Chem. Phys. 108, 2331 (1998).
http://dx.doi.org/10.1063/1.475618
31.
31.R. V. Zee, Y. Hamrick, S. Li, and W. Weltner Jr., Chem. Phys. Lett. 195, 214 (1992).
http://dx.doi.org/10.1016/0009-2614(92)86138-8
32.
32.D. J. Harding, T. R. Walsh, S. M. Hamilton, W. S. Hopkins, S. R. Mackenzie, P. Gruene, M. Haertelt, G. Meijer, and A. Fielicke, J. Chem. Phys. 132, 011101 (2010).
http://dx.doi.org/10.1063/1.3285266
33.
33.D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111 (1997).
34.
34.A. P. Sutton and J. Chen, Philos. Mag. Lett. 61, 139 (1990).
http://dx.doi.org/10.1080/09500839008206493
35.
35.D. Harding, S. R. Mackenzie, and T. R. Walsh, J. Phys. Chem. B 110, 18272 (2006).
http://dx.doi.org/10.1021/jp062603o
36.
36.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, et al. Gaussian, Inc., Pittsburgh PA (2003).
37.
37.J. C. Slater, Phys. Rev. 81, 385 (1951).
38.
38.S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
http://dx.doi.org/10.1139/p80-159
39.
39.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
40.
40.J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
http://dx.doi.org/10.1063/1.472933
41.
41.P. Fuentelba, H. Preuss, H. Stoll, and L. v. Szentpalt, Chem. Phys. Lett. 89 (1989).
42.
42.P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).
http://dx.doi.org/10.1063/1.448799
43.
43.D. J. Wales, Mol. Phys. 78, 151 (1993).
http://dx.doi.org/10.1080/00268979300100141
44.
44.T. R. Walsh, J. Chem. Phys. 124, 204317 (2006).
http://dx.doi.org/10.1063/1.2201997
45.
45.D. J. Harding, R. D. L. Davies, S. R. Mackenzie, and T. R. Walsh, J. Chem. Phys. 129, 124304 (2008).
http://dx.doi.org/10.1063/1.2981810
46.
46.J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
47.
47.V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119, 12129 (2003).
http://dx.doi.org/10.1063/1.1626543
48.
48.F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
49.
49.R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, Chem. Phys. Lett. 162, 165 (1989).
http://dx.doi.org/10.1016/0009-2614(89)85118-8
50.
50.O. Treutler and R. Ahlrichs, J. Chem. Phys. 102, 346 (1995).
http://dx.doi.org/10.1063/1.469408
51.
51.M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, and F. Furche, Phys. Rev. A 77, 053202 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.053202
52.
52.A. Fielicke, P. Gruene, M. Haertelt, D. J. Harding, and G. Meijer, J. Phys. Chem. A 114, 9755 (2010).
http://dx.doi.org/10.1021/jp102084n
53.
53.A. Fielicke, G. Meijer, and G. von Helden, Eur. Phys. J. D 24, 69 (2003).
http://dx.doi.org/10.1140/epjd/e2003-00109-6
54.
54.A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, Phys. Rev. Lett. 93, 023401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.023401
55.
55.D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995).
http://dx.doi.org/10.1016/1350-4495(94)00074-U
56.
56.M. Reiher, O. Salomon, and B. A. Hess, Theor. Chim. Acta 107, 48 (2001).
57.
57.See supplementary material at http://dx.doi.org/10.1063/1.3509778 for details of the quantum chemical calculations. [Supplementary Material]
58.
58.S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. 116, 4094 (2002).
http://dx.doi.org/10.1063/1.1445121
59.
59.P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke, Science 321, 674 (2008).
http://dx.doi.org/10.1126/science.1161166
60.
60.A. Fielicke, C. Ratsch, G. von Helden, and G. Meijer, J. Chem. Phys. 127, 234306 (2007).
http://dx.doi.org/10.1063/1.2806176
61.
61.J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Ángyán, J. Chem. Phys. 125, 249901 (2006).
http://dx.doi.org/10.1063/1.2403866
62.
62.C. Ratsch, A. Fielicke, A. Kirilyuk, J. Behler, G. von Helden, G. Meijer, and M. Scheffler, J. Chem. Phys. 122, 124302 (2005).
http://dx.doi.org/10.1063/1.1862621
63.
63.R. Gehrke, P. Gruene, A. Fielicke, G. Meijer, and K. Reuter, J. Chem. Phys. 130, 034306 (2009).
http://dx.doi.org/10.1063/1.3058637
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/21/10.1063/1.3509778
Loading
/content/aip/journal/jcp/133/21/10.1063/1.3509778
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/21/10.1063/1.3509778
2010-12-07
2016-07-29

Abstract

The geometricstructures of small cationic rhodiumclusters Rh (n = 6–12) are investigated by comparison of experimental far-infrared multiple photon dissociation spectra with spectra calculated using density functional theory. The clusters are found to favor structures based on octahedral and tetrahedral motifs for most of the sizes considered, in contrast to previous theoretical predictions that rhodiumclusters should favor cubic motifs. Our findings highlight the need for further development of theoretical and computational methods to treat these high-spin transition metalclusters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/21/1.3509778.html;jsessionid=miGnKW_6C6fHFmBcAIAnYKkT.x-aip-live-06?itemId=/content/aip/journal/jcp/133/21/10.1063/1.3509778&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/21/10.1063/1.3509778&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/21/10.1063/1.3509778'
Right1,Right2,Right3,