Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Ercolessi and J. B. Adams, Europhys. Lett. 26, 583 (1994).
2.T. G. A. Youngs, M. G. D. Popolo, and J. Kohanoff, J. Phys. Chem. B 110, 5697 (2006).
3.X. Y. Liu, J. B. Adams, F. Ercolessi, and J. A. Moriarty, Model. Simul. Mater. Sc. 4, 293 (1996).
4.S. Izvekov, M. Parrinello, C. J. Burnham, and G. A. Voth, J. Chem. Phys. 120, 10896 (2004).
5.P. Maurer, A. Laio, H. W. Hugosson, M. C. Colombo, and U. Rothlisberger, J. Chem. Theory Comput. 3, 628 (2007).
6.O. Akin-Ojo, Y. Song, and F. Wang, J. Chem. Phys. 129, 064108 (2008).
7.A. Pukrittayakamee, M. Malshe, M. Hagan, L. M. Raff, R. Narulkar, S. Bukkapatnum, and R. Komanduri, J. Chem. Phys. 130, 134101 (2009).
8.H. Sun, J. Phys. Chem. B 102, 7338 (1998).
9.P. Brommer and F. Gahler, Philos. Mag. 86, 753 (2006).
10.G. Toth, J. Phys.-Condens. Mat. 19, 335222 (2007).
11.J. Ischtwan and M. A. Collins, J. Chem. Phys. 100, 8080 (1994).
12.L. M. Raff, M. Malshe, M. Hagan, D. I. Doughan, M. G. Rockley, and R. Komanduri, J. Chem. Phys. 122, 084104 (2005).
13.M. Malshe, R. Narulkar, L. M. Raff, M. Hagan, S. Bukkapatnam, and R. Komanduri, J. Chem. Phys. 129, 044111 (2008).
14.S. Izvekov and G. A. Voth, J. Phys. Chem. B 109, 6573 (2005).
15.P. Tangney and S. Scandolo, J. Chem. Phys. 117, 8898 (2002).
16.G. Grochola, S. P. Russo, and I. K. Snook, J. Chem. Phys. 123, 204719 (2005).
17.S. Paramore, L. W. Cheng, and B. J. Berne, J. Chem. Theory Comput. 4, 1698 (2008).
18.W. G. Noid, J. W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C. Andersen, J. Chem. Phys. 128, 244114 (2008).
19.Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill, R. A. DiStasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006).
20.D. V. der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comp. Chem. 26, 1701 (2005).
21.P. Brommer and F. Gahler, Model. Simul. Mater. Sc. 15, 295 (2007).
22.B. Waldher, J. Kuta, S. Chen, N. Henson, and A. E. Clark, J. Comput. Chem. 31, 2307 (2010).
23.See supplementary material at for force field parameters and additional RDF data.[Supplementary Material]
24.C. J. Tsai and K. D. Jordan, Chem. Phys. Lett. 213, 181 (1993).
25.H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).
26.A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).

Data & Media loading...


Article metrics loading...



Force matching is a method for parameterizing empirical potentials in which the empirical parameters are fitted to a reference potential energy surface (PES). Typically, training data are sampled from a canonical ensemblegenerated with either the empirical potential or the reference PES. In this Communication, we show that sampling from either ensemble risks excluding critical regions of configuration space, leading to fitted potentials that deviate significantly from the reference PES. We present a hybrid ensemble which combines the Boltzmann probabilities of both potential surfaces into the fitting procedure, and we demonstrate that this technique improves the quality and stability of empirical potentials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd