Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/23/10.1063/1.3521493
1.
1.R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
http://dx.doi.org/10.1063/1.1740588
2.
2.R. F. W. Bader, Atoms in Molecules: A Quantum Theory, The International Series of Mono-graphs on Chemistry Vol. 22 (Oxford University Press, Oxford, 1994).
3.
3.R. F. W. Bader, Chem. Rev. 91, 893 (1991).
http://dx.doi.org/10.1021/cr00005a013
4.
4.P. Popelier, Atoms In Molecules: An Introduction (Prentice-Hall, Harlow, Great Britain, 2000).
5.
5.F. L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977).
http://dx.doi.org/10.1007/BF00549096
6.
6.P. Bultinck, C. Van Alsenoy, P. W. Ayers, and R. Carbó-Dorca, J. Chem. Phys. 126, 144111 (2007).
http://dx.doi.org/10.1063/1.2715563
7.
7.P. Bultinck, Faraday Discuss. 135, 244 (2007).
http://dx.doi.org/10.1039/b609640a
8.
8.P. Bultinck, P. W. Ayers, S. Fias, K. Tiels, and C. Van Alsenoy, Chem. Phys. Lett. 444, 205 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.07.014
9.
9.P. Bultinck, D. L. Cooper, and D. Van Neck, Phys. Chem. Chem. Phys. 11, 3424 (2009).
http://dx.doi.org/10.1039/b821734c
10.
10.T. C. Lillestolen and R. J. Wheatley, Chem. Commun. 45, 5909 (2008).
http://dx.doi.org/10.1039/b812691g
11.
11.I. Mayer and P. Salvador, Chem. Phys. Lett. 383, 368 (2004).
http://dx.doi.org/10.1016/j.cplett.2003.11.048
12.
12.L. Li and R. G. Parr, J. Chem. Phys. 84, 1704 (1986).
http://dx.doi.org/10.1063/1.450468
13.
13.I. Mayer and P. Salvador, J. Chem. Phys. 130, 234106 (2009).
http://dx.doi.org/10.1063/1.3153482
14.
14.D. Vanfleteren, D. Van Neck, P. Bultinck, P. W. Ayers, and M. Waroquier, J. Chem. Phys. 132, 164111 (2010).
http://dx.doi.org/10.1063/1.3394018
15.
15.I. Mayer and A. Hamza, Int. J. Quantum Chem. 103, 798 (2005).
http://dx.doi.org/10.1002/qua.20561
16.
16.R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
17.
17.D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993).
http://dx.doi.org/10.1063/1.464303
18.
18.B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, and A. K. Wilson, “Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, scalar relativistic basis sets for Li, Be, Na, and Mg” (in press).
19.
19.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
20.
20.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
21.
21.S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
http://dx.doi.org/10.1139/p80-159
22.
22.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
23.
23.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/23/10.1063/1.3521493
Loading
/content/aip/journal/jcp/133/23/10.1063/1.3521493
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/23/10.1063/1.3521493
2010-12-16
2016-12-04

Abstract

A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/23/1.3521493.html;jsessionid=yTXT6E2iVYtxgOdRikHiQUnW.x-aip-live-03?itemId=/content/aip/journal/jcp/133/23/10.1063/1.3521493&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/23/10.1063/1.3521493&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/23/10.1063/1.3521493'
Right1,Right2,Right3,