Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/24/10.1063/1.3522767
1.
1. L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1926).
http://dx.doi.org/10.1017/S0305004100011683
2.
2. E. Fermi, Rend. Accad. Naz. Lizei 6, 602 (1927).
3.
3. E. H. Lieb, Rev. Mod. Phys. 48, 553 (1976).
http://dx.doi.org/10.1103/RevModPhys.48.553
4.
4. J. M. C. Scott, Philos. Mag. 43, 859 (1952).
5.
5. P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).
http://dx.doi.org/10.1017/S0305004100016108
6.
6. J. Schwinger, Phys. Rev. A 22, 1827 (1980);
http://dx.doi.org/10.1103/PhysRevA.22.1827
6.Phys. Rev. A 24, 2353 (1981).
http://dx.doi.org/10.1103/PhysRevA.24.2353
7.
7. B.-G. Englert and J. Schwinger, Phys. Rev. A 29, 2339 (1984);
http://dx.doi.org/10.1103/PhysRevA.29.2339
7.Phys. Rev. A 32, 26 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.6819
8.
8. B.-G. Englert, Semiclassical Theory of Atoms, Lecture Notes in Physics (Springer-Verlag, Berlin, 1988).
9.
9. C. F. von Weizsäcker, Z. Phys. 96, 431 (1935).
http://dx.doi.org/10.1007/BF01337700
10.
10. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
11.
11. E. Teller, Rev. Mod. Phys. 34, 627 (1962).
http://dx.doi.org/10.1103/RevModPhys.34.627
12.
12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996);
http://dx.doi.org/10.1103/PhysRevLett.77.3865
12.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (E) (1997).
http://dx.doi.org/10.1103/PhysRevLett.80.891
13.
13. J. P. Perdew, L. A. Constantin, E. Sagvolden, and K. Burke, Phys. Rev. Lett. 97, 223002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.223002
14.
14. P. Elliott and K. Burke, Can. J. Chem. 87, 1485 (2009).
http://dx.doi.org/10.1139/V09-095
15.
15. P. Elliott, D. Lee, A. Cangi, and K. Burke, Phys. Rev. Lett. 100, 256406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.256406
16.
16. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008);
http://dx.doi.org/10.1103/PhysRevLett.100.136406
16.J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 102, 039902 (E) (2009).
http://dx.doi.org/doi/10.1103/PhysRevLett.102.039902
17.
17. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys. Rev. Lett. 103, 026403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.026403
18.
18. J. P. Solovej, Ann. Math. 158, 509 (2003).
http://dx.doi.org/10.4007/annals.2003.158.509
19.
19. J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 45, 101 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.101
20.
20. J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).
http://dx.doi.org/10.1103/PhysRevA.14.36
21.
21. E. Engel, in A Primer in Density Functional Theory, edited by C. Fiolhais, F. Nogueira, and M. Marques (Springer, Berlin 2003).
22.
22. A. Cangi, D. Lee, P. Elliott, and K. Burke, Phys. Rev. B 81, 235128 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235128
23.
23. E. R. Davidson, S. A. Hagstrom, S. J. Chakravorty, V. M. Umar, and C. Froese Fischer, Phys. Rev. A 44, 7071 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.7071
24.
24. E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981).
http://dx.doi.org/10.1103/RevModPhys.53.603
25.
25. J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.1691
26.
26. E. Madelung, in Die Matematischen Hilfsmittel des Physikers, 3rd. ed. (Springer, Berlin, 1936), p. 359.
27.
27. O. J. Heilmann and E. H. Lieb, Phys. Rev. A 52, 3628 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.3628
28.
28. J. P. Perdew, Phys. Rev. B 37, 6175 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.6175
29.
29. N. Cordero, N. H. March, and J. A. Alonso, Phys. Rev. A 75, 012505 (2007), and references therein.
http://dx.doi.org/10.1103/PhysRevA.75.012505
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/24/10.1063/1.3522767
Loading
/content/aip/journal/jcp/133/24/10.1063/1.3522767
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/24/10.1063/1.3522767
2010-12-29
2016-12-09

Abstract

By extrapolating the energies of nonrelativistic atoms and their ions with up to 3000 electrons within Kohn–Sham density functional theory, we find that the ionization potential remains finite and increases across a row of the periodic table, even as Z → ∞. The local density approximation for the exchange contribution becomes more accurate (or even exact) in this limit. Extended Thomas–Fermi theory matches the shell average of both the ionization potential and density change.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/24/1.3522767.html;jsessionid=wTdEtBx6yrZ8q4deFlX1-gQL.x-aip-live-06?itemId=/content/aip/journal/jcp/133/24/10.1063/1.3522767&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/24/10.1063/1.3522767&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/24/10.1063/1.3522767'
Right1,Right2,Right3,