Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/4/10.1063/1.3456164
1.
1.K. Leung, S. B. Rempe, and O. A. von Lilienfeld, J. Chem. Phys. 130, 204507 (2009).
http://dx.doi.org/10.1063/1.3137054
2.
2.J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).
http://dx.doi.org/10.1063/1.1749327
3.
3.J. Jortner and R. Noyes, J. Phys. Chem. 70, 770 (1966).
http://dx.doi.org/10.1021/j100875a026
4.
4.R. G. Pearson, J. Am. Chem. Soc. 108, 6109 (1986).
http://dx.doi.org/10.1021/ja00280a002
5.
5.C. P. Kelly, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 110, 16066 (2006).
http://dx.doi.org/10.1021/jp063552y
6.
6.W. M. Latimer, K. S. Pitzer, and C. M. Slansky, J. Chem. Phys. 7, 108 (1939).
http://dx.doi.org/10.1063/1.1750387
7.
7.H. Ashbaugh and D. Asthagiri, J. Chem. Phys. 129, 204501 (2008).
http://dx.doi.org/10.1063/1.3013865
8.
8.L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960).
9.
9.D. R. Herschbach, Angew. Chem., Int. Ed. Engl. 26, 1221 (1987).
http://dx.doi.org/10.1002/anie.198712211
10.
10.E. C. M. Chen and W. E. Wentworth, J. Phys. Chem. 89, 4099 (1985).
http://dx.doi.org/10.1021/j100265a035
11.
11.J. R. Wiley, J. M. Robinson, S. Ehdaie, E. C. M. Chen, E. S. Chen, and W. E. Wentworth, Biochem. Biophys. Res. Commun. 180, 841 (1991).
http://dx.doi.org/10.1016/S0006-291X(05)81141-6
12.
12.E. S. Chen and E. C. M. Chen, J. Phys. Chem. A 107, 169 (2003).
http://dx.doi.org/10.1021/jp0268922
13.
13.E. S. Chen and E. C. M. Chen, Phys. Rev. A 76, 032508 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.032508
14.
14.E. S. Chen and E. C. M. Chen, Mol. Simul. 35, 719 (2009).
http://dx.doi.org/10.1080/08927020902865931
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/4/10.1063/1.3456164
Loading
/content/aip/journal/jcp/133/4/10.1063/1.3456164
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/4/10.1063/1.3456164
2010-07-27
2016-09-30

Abstract

We suggest that the authors compare their theoretical Gibbs free energies (kcal/mol) , 128(1), 135; , 78(1), 70(2); and , 120(1) to recent absolute experimental values , 128; , 74; and , 119 kcal/mol referenced to that for , 266(2) kcal/mol. We present bulk Gibbs hydration free energies and ionic radii for other ions from aqueous electron affinities, monohydration free energies, and diatomic halogen anion potential energy curves consistent with the Born dielectric constant, 3.4, for electrons and protons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/4/1.3456164.html;jsessionid=F_skAUe8Asgg-C1Rlq3ZwUg2.x-aip-live-03?itemId=/content/aip/journal/jcp/133/4/10.1063/1.3456164&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/4/10.1063/1.3456164&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/4/10.1063/1.3456164'
Right1,Right2,Right3,