Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/5/10.1063/1.3469770
1.
1.H. Butt, B. Capella, and M. Kappl, Surf. Sci. Rep. 59, 1 (2005).
http://dx.doi.org/10.1016/j.surfrep.2005.08.003
2.
2.H. J. Butt, K. Graf, and M. Kappl, Physics and Chemistry of Interfaces (Wiley-VCH, Weinheim, 2003).
http://dx.doi.org/10.1002/3527602313
3.
3.J. Jang, G. C. Schatz, and M. A. Ratner, J. Chem. Phys. 116, 3875 (2002).
http://dx.doi.org/10.1063/1.1446429
4.
4.F. Dutka and M. Napiórkowski, J. Phys.: Condens. Matter 19, 466104 (2007).
http://dx.doi.org/10.1088/0953-8984/19/46/466104
5.
5.J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford University, London, 1982).
6.
6.J. Jang, G. C. Schatz, and M. A. Ratner, Phys. Rev. Lett. 92, 885504 (2004).
7.
7.H. J. Butt and M. Kappl, Adv. Colloid Interface Sci. 146, 48 (2009).
http://dx.doi.org/10.1016/j.cis.2008.10.002
8.
8.D. Bonn, J. Eggers, J. O. Indekeu, J. Meunier, and E. Rolley, Rev. Mod. Phys. 81, 739 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.739
9.
9.P. S. Swain and R. Lipowsky, Langmuir 14, 6772 (1998).
http://dx.doi.org/10.1021/la980602k
10.
10.Y. Takata, H. Matsubara, T. Matsuda, Y. Kikuchi, T. Takiue, B. Law, and M. Aratono, Colloid Polym. Sci. 286, 647 (2008).
http://dx.doi.org/10.1007/s00396-007-1806-6
11.
11.M. Farshchi-Tabrizi, M. Kappl, Y. Cheng, J. Gutmann, and H. J. Butt, Langmuir 22, 2171 (2006).
http://dx.doi.org/10.1021/la052760z
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/5/10.1063/1.3469770
Loading
/content/aip/journal/jcp/133/5/10.1063/1.3469770
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/5/10.1063/1.3469770
2010-08-06
2016-09-28

Abstract

The formation of liquid bridges between planar and conical substrates is analyzed macroscopically taking into account the line tension. Depending on the value of the line tension coefficient and geometric parameters of the system one observes two different scenarios of liquid bridge formation upon changing the fluid state along the bulk liquid-vapor coexistence. For there is a first-order transition to a state with infinitely thick liquid bridge. For the scenario consists of two steps: First there is a first-order transition to a state with liquid bridge of finite thickness, which upon further increase of temperature is followed by continuous growth of the thickness of the bridge to infinity. In addition to constructing the relevant phase diagram we examine the dependence of the width of the bridge on thermodynamic and geometric parameters of the system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/5/1.3469770.html;jsessionid=6ZJuwmTEIQkrtbcVmREP9u5m.x-aip-live-03?itemId=/content/aip/journal/jcp/133/5/10.1063/1.3469770&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/5/10.1063/1.3469770&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/5/10.1063/1.3469770'
Right1,Right2,Right3,