Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Jortner and M. Bixon, Adv. Chem. Phys. 106 (1999).
2.D. Gust, T. A. Moore, and A. L. Moore, Acc. Chem. Res. 34, 40 (2001).
3.Hydrogen Transfer Reactions, edited by J. T. Hynes, J. P. Klinman, H. H. Limbach, and R. L. Schowen (Wiley VCH, Weinheim, 2007), Vols. 1–4.
4.C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Förster, J. L. Martin, and A. Antonetti, Nature (London) 390, 490 (1997).
5.K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, Nature (London) 422, 287 (2003).
6.M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
7.A. M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K. J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A. G. MacPhee, D. Weinstein, D. P. Lowney, T. K. Allison, T. Matthews, R. W. Falcone, A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, P. H. Fuoss, C. C. Kao, D. P. Siddons, R. Pahl, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H. N. Chapman, R. W. Lee, T. N. Hansen, S. Techert, J. S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, and J. B. Hastings, Science 308, 392 (2005).
8.A. Cavalleri, S. Wall, C. Simpson, E. Statz, D. W. Ward, K. A. Nelson, M. Rini, and R. W. Schoenlein, Nature (London) 442, 664 (2006).
9.C. von Korff Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov, M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, and M. Alexe, Phys. Rev. Lett. 98, 257601 (2007).
10.M. Braun, C. von Korff-Schmising, M. Kiel, N. Zhavoronkov, J. Dreyer, M. Bargheer, T. Elsaesser, C. Root, T. E. Schrader, P. Gilch, W. Zinth, and M. Woerner, Phys. Rev. Lett. 98, 248301 (2007).
11.C. von Korff Schmising, A. Harpoeth, N. Zhavoronkov, Z. Ansari, C. Aku-Leh, M. Woerner, T. Elsaesser, M. Bargheer, M. Schmidbauer, I. Vrejoiu, D. Hesse, and M. Alexe, Phys. Rev. B 78, 060404 (2008).
12.S. L. Johnson, P. Beaud, E. Vorobeva, C. J. Milne, E. D. Murray, S. Fahy, G. Ingold, and L. Johnson, Phys. Rev. Lett. 102, 175503 (2009).
13.P. Debye and P. Scherrer, Phys. Z. 17, 277 (1916).
14.B. E. Warren, X-ray Diffraction (Dover, New York, 1968).
15.P. Coppens, I. I. Vorontsov, T. Graber, M. Gembicky, and A. Y. Kovalevsky, Acta Crystallogr., Sect. A: Found. Crystallogr. 61, 162 (2005).
16.F. Zamponi, Z. Ansari, M. Woerner, and T. Elsaesser, Opt. Express 18, 947 (2010).
17.E. O. Schlemper and W. C. Hamilton, J. Chem. Phys. 44, 4498 (1966).
18.S. Ahmed, A. M. Shamah, R. Kamel, and Y. Badr, Phys. Status Solidi A 99, 131 (1987).
19.S. Ahmed, A. M. Shamah, A. Ibrahim, and F. Hanna, Phys. Status Solidi A 115, K149 (1989).
20.D. Swain and T. N. Guru Row, Inorg. Chem. 46, 4411 (2007).
21.T. Elsaesser and M. Woerner, Acta Crystallogr., Sect. A: Found. Crystallogr. 66, 168 (2010).
22.A. V. Desyatnichenko, A. P. Shamshin, and E. V. Matyushkin, Ferrolelectrics 307, 213 (2004).
23.J. -L. Kim and K. S. Lee, J. Phys. Soc. Jpn. 65, 2664 (1996).
24.U. Syamaprasad and C. P. G. Vallabhan, Solid State Commun. 38, 555 (1981).
25.A. Abu El-Fadl and S. Bin Anooz, Cryst. Res. Technol. 41, 487 (2006).
26.B. Andriyevsky, C. Cobet, A. Patryn, and N. Esser, J. Synchrotron Radiat. 16, 260 (2009).
27.N. Zhavoronkov, Y. Gritsai, M. Bargheer, M. Woerner, T. Elsaesser, F. Zamponi, I. Uschmann, and E. Foerster, Opt. Lett. 30, 1737 (2005).
28.F. Zamponi, Z. Ansari, C. von Korff Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, Appl. Phys. A: Mater. Sci. Process. 96, 51 (2009).
29.M. Bargheer, N. Zhavoronkov, R. Bruch, H. Legall, H. Stiel, M. Woerner, and T. Elsaesser, Appl. Phys. B: Lasers Opt. 80, 715 (2005).
30.K. Adamczyk, M. Prémont-Schwarz, D. Pines, E. Pines, and E. T. J. Nibbering, Science 326, 1690 (2009).
31.H. G. Unruh, J. Krüger, and E. Sailer, Ferroelectrics 20, 3 (1978).
32.H. G. Unruh, E. Sailer, H. Hussinger, and O. Ayere, Solid State Commun. 25, 871 (1978).
33.G. V. Kozlov, S. P. Lebedev, A. A. Volkov, J. Petzelt, B. Wyncke, and F. Brehat, J. Phys. C 21, 4883 (1988).
34.D. De Sousa Meneses, G. Hauret, P. Simon, F. Brhat, and B. Wyncke, Phys. Rev. B 51, 2669 (1995).
35.K. N. Kudin and G. E. Scuseria, Chem. Phys. Lett. 289, 611 (1998).
36.M. J. Frisch, G. W. Trucks, H. B. Schegel, et al., GAUSSIAN 03, Revision C.02.
37.B. K. Ridley, Quantum Processes in Semiconductors, 3rd ed. (Clarendon, Oxford, 1993).
38.P. Gaal, W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Nature (London) 450, 1210 (2007).
39.W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Phys. Rev. Lett. 104, 146602 (2010).

Data & Media loading...


Article metrics loading...



X-raypowderdiffraction, a fundamental technique of structure research in physics, chemistry, and biology, is extended into the femtosecond time domain of atomic motions. This allows for mapping (macro)molecular structure generated by basic chemical and biological processes and for deriving transient electronic charge density maps. In the experiments, the transient intensity and angular positions of up to 20 Debye Scherrer reflections from a polycrystalline powder are measured and atomic positions and charge density maps are determined with a combined spatial and temporal resolutions of 30 pm and 100 fs. We present evidence for the so far unknown concerted transfer of electrons and protons in a prototype material, the hydrogen-bonded ionic ammonium sulfate . Photoexcitation of ammonium sulfate induces a sub-100 fs electron transfer from the sulfate groups into a highly confined electron channel along the c-axis of the unit cell. The latter geometry is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps derived from the diffraction data display a periodic modulation of the channel’s charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. Our results set the stage for femtosecond structure studies in a wide class of (bio)molecular materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd