Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/6/10.1063/1.3469779
1.
1.J. Jortner and M. Bixon, Adv. Chem. Phys. 106 (1999).
2.
2.D. Gust, T. A. Moore, and A. L. Moore, Acc. Chem. Res. 34, 40 (2001).
http://dx.doi.org/10.1021/ar9801301
3.
3.Hydrogen Transfer Reactions, edited by J. T. Hynes, J. P. Klinman, H. H. Limbach, and R. L. Schowen (Wiley VCH, Weinheim, 2007), Vols. 1–4.
4.
4.C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Förster, J. L. Martin, and A. Antonetti, Nature (London) 390, 490 (1997).
http://dx.doi.org/10.1038/37317
5.
5.K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, Nature (London) 422, 287 (2003).
http://dx.doi.org/10.1038/nature01490
6.
6.M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306, 1771 (2004).
http://dx.doi.org/10.1126/science.1104739
7.
7.A. M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K. J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A. G. MacPhee, D. Weinstein, D. P. Lowney, T. K. Allison, T. Matthews, R. W. Falcone, A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, P. H. Fuoss, C. C. Kao, D. P. Siddons, R. Pahl, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H. N. Chapman, R. W. Lee, T. N. Hansen, S. Techert, J. S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, and J. B. Hastings, Science 308, 392 (2005).
http://dx.doi.org/10.1126/science.1107996
8.
8.A. Cavalleri, S. Wall, C. Simpson, E. Statz, D. W. Ward, K. A. Nelson, M. Rini, and R. W. Schoenlein, Nature (London) 442, 664 (2006).
http://dx.doi.org/10.1038/nature05041
9.
9.C. von Korff Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov, M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, and M. Alexe, Phys. Rev. Lett. 98, 257601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.257601
10.
10.M. Braun, C. von Korff-Schmising, M. Kiel, N. Zhavoronkov, J. Dreyer, M. Bargheer, T. Elsaesser, C. Root, T. E. Schrader, P. Gilch, W. Zinth, and M. Woerner, Phys. Rev. Lett. 98, 248301 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.248301
11.
11.C. von Korff Schmising, A. Harpoeth, N. Zhavoronkov, Z. Ansari, C. Aku-Leh, M. Woerner, T. Elsaesser, M. Bargheer, M. Schmidbauer, I. Vrejoiu, D. Hesse, and M. Alexe, Phys. Rev. B 78, 060404 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.060404
12.
12.S. L. Johnson, P. Beaud, E. Vorobeva, C. J. Milne, E. D. Murray, S. Fahy, G. Ingold, and L. Johnson, Phys. Rev. Lett. 102, 175503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.175503
13.
13.P. Debye and P. Scherrer, Phys. Z. 17, 277 (1916).
14.
14.B. E. Warren, X-ray Diffraction (Dover, New York, 1968).
15.
15.P. Coppens, I. I. Vorontsov, T. Graber, M. Gembicky, and A. Y. Kovalevsky, Acta Crystallogr., Sect. A: Found. Crystallogr. 61, 162 (2005).
http://dx.doi.org/10.1107/S0108767304029551
16.
16.F. Zamponi, Z. Ansari, M. Woerner, and T. Elsaesser, Opt. Express 18, 947 (2010).
http://dx.doi.org/10.1364/OE.18.000947
17.
17.E. O. Schlemper and W. C. Hamilton, J. Chem. Phys. 44, 4498 (1966).
http://dx.doi.org/10.1063/1.1726666
18.
18.S. Ahmed, A. M. Shamah, R. Kamel, and Y. Badr, Phys. Status Solidi A 99, 131 (1987).
http://dx.doi.org/10.1002/pssa.2210990116
19.
19.S. Ahmed, A. M. Shamah, A. Ibrahim, and F. Hanna, Phys. Status Solidi A 115, K149 (1989).
http://dx.doi.org/10.1002/pssa.2211150237
20.
20.D. Swain and T. N. Guru Row, Inorg. Chem. 46, 4411 (2007).
http://dx.doi.org/10.1021/ic061901x
21.
21.T. Elsaesser and M. Woerner, Acta Crystallogr., Sect. A: Found. Crystallogr. 66, 168 (2010).
http://dx.doi.org/10.1107/S0108767309048181
22.
22.A. V. Desyatnichenko, A. P. Shamshin, and E. V. Matyushkin, Ferrolelectrics 307, 213 (2004).
http://dx.doi.org/10.1080/00150190490493140
23.
23.J. -L. Kim and K. S. Lee, J. Phys. Soc. Jpn. 65, 2664 (1996).
http://dx.doi.org/10.1143/JPSJ.65.2664
24.
24.U. Syamaprasad and C. P. G. Vallabhan, Solid State Commun. 38, 555 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90436-1
25.
25.A. Abu El-Fadl and S. Bin Anooz, Cryst. Res. Technol. 41, 487 (2006).
http://dx.doi.org/10.1002/crat.200510610
26.
26.B. Andriyevsky, C. Cobet, A. Patryn, and N. Esser, J. Synchrotron Radiat. 16, 260 (2009).
http://dx.doi.org/10.1107/S0909049508043161
27.
27.N. Zhavoronkov, Y. Gritsai, M. Bargheer, M. Woerner, T. Elsaesser, F. Zamponi, I. Uschmann, and E. Foerster, Opt. Lett. 30, 1737 (2005).
http://dx.doi.org/10.1364/OL.30.001737
28.
28.F. Zamponi, Z. Ansari, C. von Korff Schmising, P. Rothhardt, N. Zhavoronkov, M. Woerner, T. Elsaesser, M. Bargheer, T. Trobitzsch-Ryll, and M. Haschke, Appl. Phys. A: Mater. Sci. Process. 96, 51 (2009).
http://dx.doi.org/10.1007/s00339-009-5171-9
29.
29.M. Bargheer, N. Zhavoronkov, R. Bruch, H. Legall, H. Stiel, M. Woerner, and T. Elsaesser, Appl. Phys. B: Lasers Opt. 80, 715 (2005).
http://dx.doi.org/10.1007/s00340-005-1792-7
30.
30.K. Adamczyk, M. Prémont-Schwarz, D. Pines, E. Pines, and E. T. J. Nibbering, Science 326, 1690 (2009).
http://dx.doi.org/10.1126/science.1180060
31.
31.H. G. Unruh, J. Krüger, and E. Sailer, Ferroelectrics 20, 3 (1978).
32.
32.H. G. Unruh, E. Sailer, H. Hussinger, and O. Ayere, Solid State Commun. 25, 871 (1978).
http://dx.doi.org/10.1016/0038-1098(78)90290-9
33.
33.G. V. Kozlov, S. P. Lebedev, A. A. Volkov, J. Petzelt, B. Wyncke, and F. Brehat, J. Phys. C 21, 4883 (1988).
http://dx.doi.org/10.1088/0022-3719/21/28/005
34.
34.D. De Sousa Meneses, G. Hauret, P. Simon, F. Brhat, and B. Wyncke, Phys. Rev. B 51, 2669 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.2669
35.
35.K. N. Kudin and G. E. Scuseria, Chem. Phys. Lett. 289, 611 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00468-0
36.
36.M. J. Frisch, G. W. Trucks, H. B. Schegel, et al., GAUSSIAN 03, Revision C.02.
37.
37.B. K. Ridley, Quantum Processes in Semiconductors, 3rd ed. (Clarendon, Oxford, 1993).
38.
38.P. Gaal, W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Nature (London) 450, 1210 (2007).
http://dx.doi.org/10.1038/nature06399
39.
39.W. Kuehn, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Phys. Rev. Lett. 104, 146602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.146602
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/6/10.1063/1.3469779
Loading
/content/aip/journal/jcp/133/6/10.1063/1.3469779
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/6/10.1063/1.3469779
2010-08-13
2016-08-30

Abstract

X-raypowderdiffraction, a fundamental technique of structure research in physics, chemistry, and biology, is extended into the femtosecond time domain of atomic motions. This allows for mapping (macro)molecular structure generated by basic chemical and biological processes and for deriving transient electronic charge density maps. In the experiments, the transient intensity and angular positions of up to 20 Debye Scherrer reflections from a polycrystalline powder are measured and atomic positions and charge density maps are determined with a combined spatial and temporal resolutions of 30 pm and 100 fs. We present evidence for the so far unknown concerted transfer of electrons and protons in a prototype material, the hydrogen-bonded ionic ammonium sulfate . Photoexcitation of ammonium sulfate induces a sub-100 fs electron transfer from the sulfate groups into a highly confined electron channel along the c-axis of the unit cell. The latter geometry is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps derived from the diffraction data display a periodic modulation of the channel’s charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. Our results set the stage for femtosecond structure studies in a wide class of (bio)molecular materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/6/1.3469779.html;jsessionid=26paSUTtvvkfmFfGXjtUF6lM.x-aip-live-06?itemId=/content/aip/journal/jcp/133/6/10.1063/1.3469779&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/6/10.1063/1.3469779&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/6/10.1063/1.3469779'
Right1,Right2,Right3,