Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/6/10.1063/1.3470106
1.
1.E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
2.
2.M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).
http://dx.doi.org/10.1063/1.475855
3.
3.C. -P. Hsu, S. Hirata, and M. Head-Gordon, J. Phys. Chem. A 105, 451 (2001).
http://dx.doi.org/10.1021/jp0024367
4.
4.P. Elliott, F. Furche, and K. Burke, Rev. Comput. Chem. 26, 91 (2009).
http://dx.doi.org/10.1002/9780470399545.ch3
5.
5.D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.985
6.
6.B. G. Levine, C. Ko, J. Quenneville, and T. J. Martinez, Mol. Phys. 104, 1039 (2006).
http://dx.doi.org/10.1080/00268970500417762
7.
7.C. W. Bauschlicher and S. R. Langhoff, J. Chem. Phys. 89, 4246 (1988).
http://dx.doi.org/10.1063/1.455702
8.
8.Q. Wu and T. V. Voorhis, J. Chem. Theory Comput. 2, 765 (2006).
http://dx.doi.org/10.1021/ct0503163
9.
9.Q. Wu, C. -L. Cheng, and T. V. Voorhis, J. Chem. Phys. 127, 164119 (2007).
http://dx.doi.org/10.1063/1.2800022
10.
10.Q. Wu, B. Kaduk, and T. V. Voorhis, J. Chem. Phys. 130, 034109 (2009).
http://dx.doi.org/10.1063/1.3059784
11.
11.A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004).
http://dx.doi.org/10.1021/ja039556n
12.
12.N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, J. Chem. Phys. 120, 5932 (2004).
http://dx.doi.org/10.1063/1.1651060
13.
13.R. J. Cave, F. Zhang, N. T. Maitra, and K. Burke, Chem. Phys. Lett. 389, 39 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.03.051
14.
14.K. Giesbertz and E. Baerends, Chem. Phys. Lett. 461, 338 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.07.018
15.
15.S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999).
http://dx.doi.org/10.1063/1.479866
16.
16.Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 024502 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.024502
17.
17.P. Bultinck, C. V. Alsenoy, P. W. Ayers, and R. Carbó-Dorca, J. Chem. Phys. 126, 144111 (2007).
http://dx.doi.org/10.1063/1.2715563
18.
18.A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).
http://dx.doi.org/10.1103/PhysRevA.21.1561
19.
19.E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2850
20.
20.Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio, Jr., R. C. Lochan, T. Wang, G. J. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. -P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, and A. K. Chakraborty, Phys. Chem. Chem. Phys. 8, 3172 (2006).
http://dx.doi.org/10.1039/b517914a
21.
21.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Gaussian, Inc., Wallingford, CT, 2004.
22.
22.A. D. Becke, J. Chem. Phys. 88, 2547 (1988).
http://dx.doi.org/10.1063/1.454033
23.
23.A. J. C. Varandas, J. Chem. Phys. 107, 867 (1997).
http://dx.doi.org/10.1063/1.474385
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/6/10.1063/1.3470106
Loading
/content/aip/journal/jcp/133/6/10.1063/1.3470106
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/6/10.1063/1.3470106
2010-08-13
2016-12-06

Abstract

The constrained density functional theory–configuration interaction (CDFT-CI) method has previously been used to calculate ground-stateenergies and barrier heights. In this work, it is examined for use in computing electronic excited states, for the challenging case of conical intersections. Conical intersections are a prevalent feature of excited electronic surfaces, but conventional time-dependent density functional theory calculations are found to be entirely unsatisfactory at describing them, for two small systems. CDFT-CI calculations on those systems are found to be in qualitative agreement with reference CAS surfaces. These results suggest that with a suitable definition of atomic populations and a careful choice of constrained states, CDFT-CI could be the basis for a seamless description of electronic degeneracy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/6/1.3470106.html;jsessionid=tjQ6Hqf2vwcv-qtLVusX9kjf.x-aip-live-06?itemId=/content/aip/journal/jcp/133/6/10.1063/1.3470106&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/6/10.1063/1.3470106&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/6/10.1063/1.3470106'
Right1,Right2,Right3,