Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
2.M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).
3.C. -P. Hsu, S. Hirata, and M. Head-Gordon, J. Phys. Chem. A 105, 451 (2001).
4.P. Elliott, F. Furche, and K. Burke, Rev. Comput. Chem. 26, 91 (2009).
5.D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
6.B. G. Levine, C. Ko, J. Quenneville, and T. J. Martinez, Mol. Phys. 104, 1039 (2006).
7.C. W. Bauschlicher and S. R. Langhoff, J. Chem. Phys. 89, 4246 (1988).
8.Q. Wu and T. V. Voorhis, J. Chem. Theory Comput. 2, 765 (2006).
9.Q. Wu, C. -L. Cheng, and T. V. Voorhis, J. Chem. Phys. 127, 164119 (2007).
10.Q. Wu, B. Kaduk, and T. V. Voorhis, J. Chem. Phys. 130, 034109 (2009).
11.A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004).
12.N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, J. Chem. Phys. 120, 5932 (2004).
13.R. J. Cave, F. Zhang, N. T. Maitra, and K. Burke, Chem. Phys. Lett. 389, 39 (2004).
14.K. Giesbertz and E. Baerends, Chem. Phys. Lett. 461, 338 (2008).
15.S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999).
16.Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 024502 (2005).
17.P. Bultinck, C. V. Alsenoy, P. W. Ayers, and R. Carbó-Dorca, J. Chem. Phys. 126, 144111 (2007).
18.A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).
19.E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).
20.Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio, Jr., R. C. Lochan, T. Wang, G. J. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. -P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, and A. K. Chakraborty, Phys. Chem. Chem. Phys. 8, 3172 (2006).
21.M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Gaussian, Inc., Wallingford, CT, 2004.
22.A. D. Becke, J. Chem. Phys. 88, 2547 (1988).
23.A. J. C. Varandas, J. Chem. Phys. 107, 867 (1997).

Data & Media loading...


Article metrics loading...



The constrained density functional theory–configuration interaction (CDFT-CI) method has previously been used to calculate ground-stateenergies and barrier heights. In this work, it is examined for use in computing electronic excited states, for the challenging case of conical intersections. Conical intersections are a prevalent feature of excited electronic surfaces, but conventional time-dependent density functional theory calculations are found to be entirely unsatisfactory at describing them, for two small systems. CDFT-CI calculations on those systems are found to be in qualitative agreement with reference CAS surfaces. These results suggest that with a suitable definition of atomic populations and a careful choice of constrained states, CDFT-CI could be the basis for a seamless description of electronic degeneracy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd