1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The fragment spin difference scheme for triplet-triplet energy transfer coupling
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/133/7/10.1063/1.3467882
1.
1.N. I. Krinsky, Philos. Trans. R. Soc. London, Ser. B 284, 581 (1978).
http://dx.doi.org/10.1098/rstb.1978.0091
2.
2.R. J. Cogdell and H. A. Frank, Biochim. Biophys. Acta 895, 63 (1987).
3.
3.The Photochemistry of Carotenoids, edited by H. A. Frank, A. J. Young, G. Nritton, and R. J. Cogdell (Kluwer, Dordrecht, 1999).
4.
4.N. J. Fraser, H. Hashimoto, and R. J. Cogdell, Photosynth. Res. 70, 249 (2001).
http://dx.doi.org/10.1023/A:1014715114520
5.
5.R. Ziessel, M. Hissler, A. El-ghayoury, and A. Harriman, Coord. Chem. Rev. 178–180, 1251 (1998).
http://dx.doi.org/10.1016/S0010-8545(98)00060-5
6.
6.B. Schlicke, P. Nelser, L. De Cola, E. Sabbioni, and V. Balzani, J. Am. Chem. Soc. 121, 4207 (1999).
http://dx.doi.org/10.1021/ja990044b
7.
7.F. Barigelletti and L. Flamigni, Chem. Soc. Rev. 29, 1 (2000).
http://dx.doi.org/10.1039/a804246b
8.
8.F. S. Rondonuwu, T. Taguchi, R. Fujii, K. Yokoyama, Y. Koyama, and Y. Watanabe, Chem. Phys. Lett. 384, 364 (2004).
http://dx.doi.org/10.1016/j.cplett.2003.12.024
9.
9.A. D’Aléo, S. Welter, E. Cecchetto, and L. De Cola, Pure Appl. Chem. 77, 1035 (2005).
http://dx.doi.org/10.1351/pac200577061035
10.
10.R. R. Islangulov, D. V. Kozlog, and F. N. Castellano, Chem. Commun. (Cambridge) 2005, 3776.
11.
11.C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett. 67, 3853 (1995).
http://dx.doi.org/10.1063/1.115295
12.
12.M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature (London) 395, 151 (1998).
http://dx.doi.org/10.1038/25954
13.
13.M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
http://dx.doi.org/10.1063/1.124258
14.
14.Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature (London) 440, 908 (2006).
http://dx.doi.org/10.1038/nature04645
15.
15.P. -T. Chou and Y. Chi, Chem.-Eur. J. 13, 380 (2007).
http://dx.doi.org/10.1002/chem.200601272
16.
16.H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials (Wiley-VCH, Weinheim, 2007).
http://dx.doi.org/10.1002/9783527621309
17.
17.T. Föster, Ann. Phys. 437, 55 (1948).
http://dx.doi.org/10.1002/andp.19484370105
18.
18.T. Föster, Discuss. Faraday Soc. 27, 7 (1959).
http://dx.doi.org/10.1039/df9592700007
19.
19.D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
http://dx.doi.org/10.1063/1.1699044
20.
20.H. Nagae, T. Kakitani, T. Katoh, and M. Mimuro, J. Chem. Phys. 98, 8012 (1993).
http://dx.doi.org/10.1063/1.464555
21.
21.G. D. Scholes and K. P. Ghiggino, J. Chem. Phys. 98, 4580 (1994).
http://dx.doi.org/10.1021/j100068a017
22.
22.C. -P. Hsu, G. R. Fleming, M. Head-Gordon, and T. Head-Gordon, J. Chem. Phys. 114, 3065 (2001).
http://dx.doi.org/10.1063/1.1338531
23.
23.G. Porter and F. Wilkinson, Proc. R. Soc. London, Ser. A 264, 1 (1961).
http://dx.doi.org/10.1098/rspa.1961.0182
24.
24.G. L. Closs, P. Piotrowiak, J. M. Maclnnis, and G. R. Fleming, J. Am. Chem. Soc. 110, 2652 (1988).
http://dx.doi.org/10.1021/ja00216a051
25.
25.J. Jortner, S. A. Rice, and J. L. Katz, J. Chem. Phys. 42, 309 (1965).
http://dx.doi.org/10.1063/1.1695693
26.
26.A. Damjanović, T. Ritz, and K. Schulten, Phys. Rev. E 59, 3293 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.3293
27.
27.A. Damjanović, T. Ritz, and K. Schulten, Biophys. J. 79, 1695 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76422-8
28.
28.R. J. Cogdell, M. F. Hipkins, W. MacDonald, and T. G. Truscott, Biochim. Biophys. Acta 634, 191 (1981).
http://dx.doi.org/10.1016/0005-2728(81)90138-9
29.
29.J. Bautista, R. Hiller, F. Sharples, D. Gosztola, M. Wasielewski, and H. A. Frank, J. Phys. Chem. A 103, 2267 (1999).
http://dx.doi.org/10.1021/jp983943f
30.
30.M. Di Valentin, S. Ceola, E. Salvadori, G. Agostini, and D. Carbonera, Biochim. Biophys. Acta 1777, 186 (2008).
http://dx.doi.org/10.1016/j.bbabio.2007.09.002
31.
31.G. D. Scholes, R. D. Harcourt, and K. P. Ghiggino, J. Chem. Phys. 102, 9574 (1995).
http://dx.doi.org/10.1063/1.468773
32.
32.Z. -Q. You, C. -P. Hsu, and G. R. Fleming, J. Chem. Phys. 124, 044506 (2006).
http://dx.doi.org/10.1063/1.2155433
33.
33.N. Koga, K. Sameshima, and K. Morokuma, J. Phys. Chem. 97, 13117 (1993).
http://dx.doi.org/10.1021/j100152a014
34.
34.A. Kyrychenko and B. Albinsson, Chem. Phys. Lett. 366, 291 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01558-0
35.
35.M. P. Eng, T. Ljungdahl, J. Martensson, and B. Albinsson, J. Phys. Chem. B 110, 6483 (2006).
http://dx.doi.org/10.1021/jp056536u
36.
36.R. J. Cave and M. D. Newton, Chem. Phys. Lett. 249, 15 (1996).
http://dx.doi.org/10.1016/0009-2614(95)01310-5
37.
37.J. E. Subotnik, S. Yeganeh, R. J. Cave, and M. A. Ratner, J. Chem. Phys. 129, 244101 (2008).
http://dx.doi.org/10.1063/1.3042233
38.
38.A. A. Voityuk and N. Rösch, J. Chem. Phys. 117, 5607 (2002).
http://dx.doi.org/10.1063/1.1502255
39.
39.C. -P. Hsu, Z. -Q. You, and H. -C. Chen, J. Phys. Chem. C 112, 1204 (2008).
http://dx.doi.org/10.1021/jp076512i
40.
40.C. -P. Hsu, Acc. Chem. Res. 42, 509 (2009).
http://dx.doi.org/10.1021/ar800153f
41.
41.R. McWeeny, Methods of Molecular Quantum Mechanics (Academic, New York, 1996).
42.
42.J. E. D. Bene, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 55, 2236 (1971).
http://dx.doi.org/10.1063/1.1676398
43.
43.J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
http://dx.doi.org/10.1021/j100180a030
44.
44.M. A. El-Sayed, D. S. Tinti, and E. M. Yee, J. Chem. Phys. 51, 5721 (1969).
http://dx.doi.org/10.1063/1.1672008
45.
45.M. Head-Gordon, A. M. Graiia, D. Maurice, and C. A. White, J. Phys. Chem. 99, 14261 (1995).
http://dx.doi.org/10.1021/j100039a012
46.
46.R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
http://dx.doi.org/10.1063/1.1740588
47.
47.A. D. Becke, J. Chem. Phys. 88, 2547 (1988).
http://dx.doi.org/10.1063/1.454033
48.
48.C. Lee, W. Yang, and R. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
49.
49.P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
http://dx.doi.org/10.1021/j100096a001
50.
50.T. H. Dunning, J. Chem. Phys. 53, 2823 (1970).
http://dx.doi.org/10.1063/1.1674408
51.
51.K. Ohta, G. L. Closs, K. Morokuma, and N. J. Green, J. Am. Chem. Soc. 108, 1319 (1986).
http://dx.doi.org/10.1021/ja00266a045
52.
52.A. Broo and S. Larsson, Chem. Phys. 148, 103 (1990).
http://dx.doi.org/10.1016/0301-0104(90)89011-E
53.
53.A. Farazdel, M. Dupuis, E. Clementi, and A. Aviram, J. Am. Chem. Soc. 112, 4206 (1990).
http://dx.doi.org/10.1021/ja00167a016
54.
54.L. Y. Zhang, R. A. Friesner, and R. B. Murphy, J. Chem. Phys. 107, 450 (1997).
http://dx.doi.org/10.1063/1.474406
55.
55.B. P. Krueger, G. D. Scholes, and G. R. Fleming, J. Phys. Chem. B 102, 5378 (1998).
http://dx.doi.org/10.1021/jp9811171
56.
56.C. Curutchet and B. Mennucci, J. Am. Chem. Soc. 127, 16733 (2005).
http://dx.doi.org/10.1021/ja055489g
57.
57.P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
http://dx.doi.org/10.1063/1.448975
58.
58.J. A. Kooter and J. H. Van der Waals, Mol. Phys. 37, 997 (1979).
http://dx.doi.org/10.1080/00268977900100771
59.
59.W. van der Poel and J. van der Waals, Mol. Phys. 53, 673 (1984).
http://dx.doi.org/10.1080/00268978400102591
60.
60.K. Prendergast and T. G. Spiro, J. Phys. Chem. 95, 9728 (1991).
http://dx.doi.org/10.1021/j100177a025
61.
61.K. A. Nguyen and R. Pachter, J. Chem. Phys. 118, 5802 (2003).
http://dx.doi.org/10.1063/1.1540627
62.
62.Y. Shao, L. Fusti Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio, Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. -P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. Min Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. Lee Woodcock III, W. Zhang, A. T. Bell, and A. K. Chakraborty, Phys. Chem. Chem. Phys. 8, 3172 (2006).
http://dx.doi.org/10.1039/b517914a
63.
63.Z. -Q. You, Y. Shao, and C. -P. Hsu, Chem. Phys. Lett. 390, 116 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.03.142
64.
64.See supplementary material at http://dx.doi.org/10.1063/1.3467882 for the detailed numeric data in Figs. 4, 6, and 8.[Supplementary Material]
65.
65.R. F. Fink, J. Pfister, A. Schneider, H. Zhao, and B. Engels, Chem. Phys. 343, 353 (2008).
http://dx.doi.org/10.1016/j.chemphys.2007.08.021
66.
66.R. F. Fink, J. Pfister, H. M. Zhao, and B. Engels, Chem. Phys. 346, 275 (2008).
http://dx.doi.org/10.1016/j.chemphys.2008.03.014
67.
67.C. -H. Yang and C. -P. Hsu, J. Chem. Phys. 124, 244507 (2006).
http://dx.doi.org/10.1063/1.2207613
68.
68.R. D. Harcourt, G. D. Scholes, and K. P. Ghiggino, J. Chem. Phys. 101, 10521 (1994).
http://dx.doi.org/10.1063/1.467869
69.
69.R. L. Martin, J. Chem. Phys. 118, 4775 (2003).
http://dx.doi.org/10.1063/1.1558471
70.
70.J. Andréasson, J. Kajanus, J. Mårtensson, and B. Albinsson, J. Am. Chem. Soc. 122, 9844 (2000).
http://dx.doi.org/10.1021/ja001409r
71.
71.J. Andréasson, A. Kyrychenko, J. Mårtensson, and B. Albinsson, Photochem. Photobiol. Sci. 1, 111 (2002).
http://dx.doi.org/10.1039/b108200k
72.
72.M. P. Eng and B. Albinsson, Angew. Chem., Int. Ed. 45, 5626 (2006).
http://dx.doi.org/10.1002/anie.200601379
73.
73.B. Albinsson, M. P. Eng, K. Pettersson, and M. U. Winters, Phys. Chem. Chem. Phys. 9, 5847 (2007).
http://dx.doi.org/10.1039/b706122f
74.
74.W. van Dorp, M. Soma, J. Kooter, and J. van der Waals, Mol. Phys. 28, 1551 (1974).
http://dx.doi.org/10.1080/00268977400102801
75.
75.W. G. van Dorp, W. H. Schoemaker, M. Soma, and J. H. van der Waals, Mol. Phys. 30, 1701 (1975).
http://dx.doi.org/10.1080/00268977500103231
76.
76.A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004).
http://dx.doi.org/10.1021/ja039556n
77.
77.A. M. Brun and A. Harriman, J. Am. Chem. Soc. 116, 10383 (1994).
http://dx.doi.org/10.1021/ja00102a004
78.
78.V. Grosshenny, A. Harriman, and R. Ziessel, Angew. Chem., Int. Ed. Engl. 34, 1100 (1995).
http://dx.doi.org/10.1002/anie.199511001
79.
79.F. Barigelletti, L. Flamigni, M. Guardigli, A. Juris, M. Beley, S. Chodorowski-Kimmes, J. -P. Collin, and J. -P. Sauvage, Inorg. Chem. 35, 136 (1996).
http://dx.doi.org/10.1021/ic9503085
80.
80.R. E. Holmlin, R. T. Tong, and J. K. Barton, J. Am. Chem. Soc. 120, 9724 (1998).
http://dx.doi.org/10.1021/ja982187o
81.
81.A. El-ghayoury, A. Harriman, A. Khatyr, and R. Ziessel, Angew. Chem., Int. Ed. 39, 185 (2000).
http://dx.doi.org/10.1002/(SICI)1521-3773(20000103)39:1<185::AID-ANIE185>3.0.CO;2-3
82.
82.A. Harriman, A. Khatyr, R. Ziessel, and A. C. Benniston, Angew. Chem., Int. Ed. 39, 4287 (2000).
http://dx.doi.org/10.1002/1521-3773(20001201)39:23<4287::AID-ANIE4287>3.0.CO;2-0
83.
83.M. Rust, J. Lappe, and R. J. Cave, J. Phys. Chem. A 106, 3930 (2002).
http://dx.doi.org/10.1021/jp0142886
84.
84.J. E. Subotnik, R. J. Cave, R. P. Steele, and N. Shenvi, J. Chem. Phys. 130, 234102 (2009).
http://dx.doi.org/10.1063/1.3148777
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/7/10.1063/1.3467882
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Molecules tested for intermolecular TET. The all-trans polyacetylenes studied are ethylene , butadiene , hexatriene , and octatetraene . The polycyclic aromatic hydrocarbons studied include naphthalene , anthracene , tetracene , phenanthrene , and pyrene .

Image of FIG. 2.

Click to view

FIG. 2.

The OPE-linked donor-acceptor systems studied in Ref. 35 and the number of phenyleneethylene units ranges between 2 and 5. Arrows denote the axes for and states along which the wave function is asymmetric.

Image of FIG. 3.

Click to view

FIG. 3.

Basis set dependence for FSD coupling value for TET between a pair of butadiene (a) and naphthalene (b). Basis sets used are 3-21G (crosses), (open triangles), DZP (open circles), (asterisks), (open squares), (filled triangles), and aug-cc-pVDZ (open inverted triangles).

Image of FIG. 4.

Click to view

FIG. 4.

Distance dependence for TET couplings calculated with the basis set for a pair of molecules, as shown in Fig. 1. The exponential decay constants are 2.52, 2.60, 2.67, 2.73, 2.78, 2.85, 2.91, 2.82, and (Ref. 64).

Image of FIG. 5.

Click to view

FIG. 5.

Basis set dependence for DC coupling for TET between a pair of butadiene (a) and naphthalene (b). Basis sets used are 3-21G (crosses), (open triangles), DZP (open circles), (asterisks), (open squares), (filled triangles), and aug-cc-pVDZ (open inverted triangles).

Image of FIG. 6.

Click to view

FIG. 6.

DC values for TET couplings for a pair of molecules as listed in Fig. 1. With the basis, the exponential decay constants are 2.56, 2.64, 2.75, 2.81, 2.74, 2.89, 2.94, 2.84, and (Ref. 64).

Image of FIG. 7.

Click to view

FIG. 7.

Basis set dependence for the exchange integrals between a pair of butadiene (a) and naphthalene (b). Basis sets used are 3-21G (crosses), (open triangles), DZP (open circles), (asterisks), (open squares), (filled triangles), and aug-cc-pVDZ (open inverted triangles).

Image of FIG. 8.

Click to view

FIG. 8.

The exchange integral values calculated with the basis set for a pair of molecules, as shown in Fig. 1. The exponential decay constants are 2.44, 2.54, 2.68, 2.80, 2.79, 2.92, 3.09, 2.88, and (Ref. 64).

Image of FIG. 9.

Click to view

FIG. 9.

Comparison between the Dexter’s exchange integral [Eq. (3)] and the FSD coupling for all model systems at different separation distances.

Image of FIG. 10.

Click to view

FIG. 10.

Distance dependence of TET rate constants from calculations (dashed line with closed circles) and experiments (solid line with open triangles) for the systems.

Tables

Generic image for table

Click to view

Table I.

The first four CIS excitation energies (in eV) for molecules.

Generic image for table

Click to view

Table II.

The FSD couplings and estimated rate constants for TET in molecules.

Loading

Article metrics loading...

/content/aip/journal/jcp/133/7/10.1063/1.3467882
2010-08-19
2014-04-21

Abstract

To calculate the electronic couplings in both inter- and intramolecular triplet energy transfer (TET), we have developed the “fragment spin difference” (FSD) scheme. The FSD was a generalization from the “fragment charge difference” (FCD) method of Voityuk et al. [J. Chem. Phys.117, 5607 (2002)] for electron transfer(ET) coupling. In FSD, the spin population difference was used in place of the charge difference in FCD. FSD is derived from the eigenstate energies and populations, and therefore the FSD couplings contain all contributions in the Hamiltonian as well as the potential overlap effect. In the present work, two series of molecules, all-trans-polyene oligomers and polycyclic aromatic hydrocarbons, were tested for intermolecular TET study. The TET coupling results are largely similar to those from the previously developed direct coupling scheme, with FSD being easier and more flexible in use. On the other hand, the Dexter’s exchange integral value, a quantity that is often used as an approximate for the TET coupling, varies in a large range as compared to the corresponding TET coupling. To test the FSD for intramolecular TET, we have calculated the TET couplings between zinc(II)-porphyrin and free-base porphyrin separated by different numbers of -phenyleneethynylene bridge units. Our estimated rate constants are consistent with experimentally measured TET rates. The FSD method can be used for both intermolecular and intramolecular TET, regardless of their symmetry. This general applicability is an improvement over most existing methodologies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/7/1.3467882.html;jsessionid=1jp0ensb8gj1w.x-aip-live-06?itemId=/content/aip/journal/jcp/133/7/10.1063/1.3467882&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The fragment spin difference scheme for triplet-triplet energy transfer coupling
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/7/10.1063/1.3467882
10.1063/1.3467882
SEARCH_EXPAND_ITEM