Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
2.D. S. Peterka, M. Ahmed, C. Y. Ng, and A. G. Suits, Chem. Phys. Lett. 312, 108 (1999).
3.M. Takahashi, J. P. Cave, and J. H. D. Eland, Rev. Sci. Instrum. 71, 1337 (2000).
4.L. Dinu, A. T. J. B. Eppink, F. Rosca-Pruna, H. L. Offerhaus, W. J. van der Zande, and M. J. J. Vrakking, Rev. Sci. Instrum. 73, 4206 (2002).
5.Y. Hikosaka and E. Shigemasa, J. Electron Spectrosc. Relat. Phenom. 148, 5 (2005).
6.A. Hishikawa, A. Matsuda, M. Fushitani, and E. J. Takahashi, Phys. Rev. Lett. 99, 258302 (2007).
7.D. Rolles, Z. D. Pesic, M. Perri, R. C. Bilodeau, G. D. Ackerman, B. S. Rude, A. L. D. Kilcovne, J. D. Bozek, and N. Berrah, Nucl. Instrum. Methods Phys. Res. B 261, 170 (2007).
8.M. S. I. Prodhan, H. Katayanagi, C. Q. Huang, H. Yagi, B. P. Kafle, and K. Mitsuke, Chem. Phys. Lett. 469, 19 (2009).
9.C. E. Klots, J. Chem. Phys. 100, 1035 (1994).
10.J. Laskin, T. Peres, A. Khong, H. A. Jimenez-Vazquez, R. J. Cross, M. Saunders, D. S. Bethune, M. S. de Vries, and C. Lifshitz, Int. J. Mass. Spectrom. 185–187, 61 (1999).
11.C. Lifshitz, Int. J. Mass. Spectrom. 198, 1 (2000).
12.K. Głuch, S. Matt-Leubner, O. Echt, B. Concina, P. Scheier, and T. D. Märk, J. Chem. Phys. 121, 2137 (2004).
13.B. Climen, B. Concina, M. A. Lebeault, F. Lépine, B. Baguenard, and C. Bordas, Chem. Phys. Lett. 437, 17 (2007).
14.J. U. Andersen, E. Bonderup, and K. Hansen, J. Chem. Phys. 114, 6518 (2001).
15.D. B. Qian, X. Ma, Z. Q. Chen, D. C. Zhang, X. L. Zhu, B. Li, H. P. Liu, K. L. Zu, and W. Q. Wen, Chem. Phys. Lett. 470, 215 (2009).
16.K. Hansen and O. Echt, Phys. Rev. Lett. 78, 2337 (1997).
17.J. Kou, T. Mori, Y. Kubozono, and K. Mitsuke, Phys. Chem. Chem. Phys. 7, 119 (2005).
18.J. Kou, T. Mori, Y. Kubozono, and K. Mitsuke, J. Electron Spectrosc. Relat. Phenom. 144–147, 247 (2005).
19.K. Mitsuke, H. Katayanagi, J. Kou, T. Mori, and Y. Kubozono, in Ionization, Correlation, and Polarization in Atomic Collisions, edited by A. Lahman-Bennani and B. Lohmann (American Institute of Physics, Buenos Aires, 2006), Vol. CP811, p. 161.
20.B. P. Kafle, H. Katayanagi, and K. Mitsuke, in Synchrotron Radiation Instrumentation, edited by J. Y. Choi and S. Rah (American Institute of Physics, Korea, 2007), Vol. CP879, p. 1809.
21.Even after considering the PEPICO detection favorable to multiple photoionization, the relative peak height of and in Fig. 1(d) is much higher than that expected from the ratio between the cross sections of multiple and single photoionization. This is due to our not having made yet the corrections for the -dependence of the efficiency of the PSD detector.
22.B. Tsipinyuk, A. Budrevich, M. Grinberg, and E. Kolodney, J. Chem. Phys. 106, 2449 (1997).
23.J. de Vries, H. Steger, B. Kamke, C. Menzel, B. Weisser, W. Kamke, and I. V. Hertel, Chem. Phys. Lett. 188, 159 (1992).
24.H. Katayanagi, C. Huang, and K. Mitsuke (unpublished data).
25.J. Laskin and C. Lifshitz, J. Mass Spectrom. 36, 459 (2001).
26.R. Wörgötter, B. Dünser, P. Scheier, T. D. Märk, M. Foltin, C. E. Klots, J. Laskin, and C. Lifshitz, J. Chem. Phys. 104, 1225 (1996).
27.D. Muigg, G. Denifl, P. Scheier, K. Becker, and T. D. Märk, J. Chem. Phys. 108, 963 (1998).

Data & Media loading...


Article metrics loading...



The velocity distributions of the fragments produced by dissociativephotoionization of have been measured in the extreme UV region for the first time, by using a flight-time resolved velocity map imaging technique combined with a high-temperature molecular beam and synchrotron radiation. Values of the average kinetic energy release were estimated at six different photon energies with respect to five reaction steps of sequential ejection, starting from to . The translational temperatures of the fragment ions were found to be lower than those obtained by laser multiphoton absorption of . The kinetic energies released in the first to fourth steps increase with increasing and reach 0.35–0.5 eV at , reflecting statistical redistribution of the excess energy in the transition state, whereas that in the fifth step leading to was exceptionally small.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd