Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/9/10.1063/1.3476461
1.
1.I. Ciofini and C. Daul, Coord. Chem. Rev. 238–239, 187 (2003).
http://dx.doi.org/10.1016/S0010-8545(02)00330-2
2.
2.I. P. R. Moreira and F. Illas, Phys. Chem. Chem. Phys. 8, 1645 (2006).
http://dx.doi.org/10.1039/b515732c
3.
3.I. Rudra, Q. Wu, and T. Van Voorhis, J. Chem. Phys. 124, 024103 (2006).
http://dx.doi.org/10.1063/1.2145878
4.
4.M. Reiher, Faraday Discuss. 135, 97 (2007).
http://dx.doi.org/10.1039/b605229k
5.
5.S. R. White and R. L. Martin, J. Chem. Phys. 110, 4127 (1999).
http://dx.doi.org/10.1063/1.478295
6.
6.G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462 (2002).
http://dx.doi.org/10.1063/1.1449459
7.
7.S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.2863
8.
8.S. R. White, Phys. Rev. B 48, 10345 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.10345
9.
9.G. K.-L. Chan, M. Kallay, and J. Gauss, J. Chem. Phys. 121, 6110 (2004).
http://dx.doi.org/10.1063/1.1783212
10.
10.G. K.-L. Chan, J. Chem. Phys. 120, 3172 (2004).
http://dx.doi.org/10.1063/1.1638734
11.
11.J. Hachmann, W. Cardoen, and G. K.-L. Chan, J. Chem. Phys. 125, 144101 (2006).
http://dx.doi.org/10.1063/1.2345196
12.
12.J. Hachmann, J. J. Dorando, M. Aviles, and G. K.-L. Chan, J. Chem. Phys. 127, 134309 (2007).
http://dx.doi.org/10.1063/1.2768362
13.
13.G. K.-L. Chan, Phys. Chem. Chem. Phys. 10, 3454 (2008).
http://dx.doi.org/10.1039/b805292c
14.
14.K. H. Marti, I. M. Ondík, G. Moritz, and M. Reiher, J. Chem. Phys. 128, 014104 (2008).
http://dx.doi.org/10.1063/1.2805383
15.
15.Y. Kurashige and T. Yanai, J. Chem. Phys. 130, 234114 (2009).
http://dx.doi.org/10.1063/1.3152576
16.
16.D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 128, 144117 (2008).
http://dx.doi.org/10.1063/1.2883976
17.
17.D. Zgid and M. Nooijen, J. Chem. Phys. 128, 144115 (2008).
http://dx.doi.org/10.1063/1.2883980
18.
18.D. Zgid and M. Nooijen, J. Chem. Phys. 128, 144116 (2008).
http://dx.doi.org/10.1063/1.2883981
19.
19.T. Yanai, Y. Kurashige, D. Ghosh, and G. K.-L. Chan, Int. J. Quantum Chem. 109, 2178 (2009).
http://dx.doi.org/10.1002/qua.22099
20.
20.E. Wasserman, R. W. Murray, W. A. Yager, A. M. Trozzolo, and G. Smolinsky, J. Am. Chem. Soc. 89, 5076 (1967).
http://dx.doi.org/10.1021/ja00995a066
21.
21.K. Itoh, Chem. Phys. Lett. 1, 235 (1967).
http://dx.doi.org/10.1016/0009-2614(67)85061-9
22.
22.I. Fujita, Y. Teki, T. Takui, T. Kinoshita, K. Itoh, F. Miko, Y. Sawaki, H. Iwamura, A. Izuoka, and T. Sugawara, J. Am. Chem. Soc. 112, 4074 (1990).
http://dx.doi.org/10.1021/ja00166a074
23.
23.K. Matsuda, N. Nakamura, K. Takahashi, K. Inoue, N. Koga, and H. Iwamura, J. Am. Chem. Soc. 117, 5550 (1995).
http://dx.doi.org/10.1021/ja00125a017
24.
24.T. Takui and K. Itoh, Chem. Phys. Lett. 19, 120 (1973).
http://dx.doi.org/10.1016/0009-2614(73)87077-0
25.
25.Y. Teki, T. Takui, K. Itoh, H. Iwamura, and K. Kobayashi, J. Am. Chem. Soc. 105, 3722 (1983).
http://dx.doi.org/10.1021/ja00349a068
26.
26.N. Nakamura, K. Inoue, H. Iwamura, T. Fujioka, and Y. Sawaki, J. Am. Chem. Soc. 114, 1484 (1992).
http://dx.doi.org/10.1021/ja00030a055
27.
27.N. Nakamura, K. Inoue, and H. Iwamura, Angew. Chem., Int. Ed. Engl. 32, 872 (1993).
http://dx.doi.org/10.1002/anie.199308721
28.
28.K. Matsuda, N. Nakamura, K. Inoue, N. Koga, and H. Iwamura, Chem.-Eur. J. 2, 259 (1996).
http://dx.doi.org/10.1002/chem.19960020305
29.
29.K. Matsuda, N. Nakamura, K. Inoue, N. Koga, and H. Iwamura, Bull. Chem. Soc. Jpn. 69, 1483 (1996).
http://dx.doi.org/10.1246/bcsj.69.1483
30.
30.N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.1133
31.
31.F. Aquilante, P. -A. Malmqvist, T. B. Pedersen, A. Ghosh, and B. O. Roos, J. Chem. Theory Comput. 4, 694 (2008).
http://dx.doi.org/10.1021/ct700263h
32.
32.F. Aquilante, T. B. Pedersen, R. Lindh, B. O. Roos, A. Sánchez de Merás, and H. Koch, J. Chem. Phys. 129, 024113 (2008).
http://dx.doi.org/10.1063/1.2953696
33.
33.F. Aquilante, L. D. Vico, N. Ferré, G. Ghigo, P. -Å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, and R. Lindh, J. Comput. Chem. 31, 224 (2010).
http://dx.doi.org/10.1002/jcc.21318
34.
34.K. Yamaguchi, H. Fukui, and T. Fueno, Chem. Lett. 4, 625 (1986).
http://dx.doi.org/10.1246/cl.1986.625
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.3476461 for the details of electronic configurations in wave function of the singlet states for -carbene with , 5.[Supplementary Material]
36.
36.M. Mitani, H. Mori, Y. Takano, D. Yamaki, Y. Yoshioka, and K. Yamaguchi, J. Chem. Phys. 113, 4035 (2000).
http://dx.doi.org/10.1063/1.1286418
37.
37.T. Sugawara, S. Bandow, K. Kimura, H. Iwamura, and K. Itoh, J. Am. Chem. Soc. 108, 368 (1986).
http://dx.doi.org/10.1021/ja00263a003
38.
38.K. Nasu, Phys. Rev. B 33, 330 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.330
39.
39.Y. Teki, T. Takui, M. Kitano, and K. Itoh, Chem. Phys. Lett. 142, 181 (1987).
http://dx.doi.org/10.1016/0009-2614(87)80918-1
40.
40.S. A. Alexander and D. J. Klein, J. Am. Chem. Soc. 110, 3401 (1988).
http://dx.doi.org/10.1021/ja00219a010
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/9/10.1063/1.3476461
Loading
/content/aip/journal/jcp/133/9/10.1063/1.3476461
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/9/10.1063/1.3476461
2010-09-01
2016-10-01

Abstract

An investigation into spin structures of poly(-phenylenecarbene), a prototype of magnetic organic molecules, is presented using the ab initio density matrix renormalization group method. It is revealed by achieving large-scale multireference calculations that the energy differences between high-spin and low-spin states (spin-gaps) of polycarbenes decrease with increasing the number of carbene sites. This size-dependency of the spin-gaps strikingly contradicts the predictions with single-reference methods including density functional theory. The wave function analysis shows that the low-spin states are beyond the classical spin picture, namely, much of multireference character, and thus are manifested as strongly correlated quantum states. The size dependence of the spin-gaps involves an odd-even oscillation, which cannot be explained by the integer-spin Heisenberg model with a single magnetic-coupling constant.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/9/1.3476461.html;jsessionid=H-0Sp7ThYtl77lYVmXgIWU3J.x-aip-live-02?itemId=/content/aip/journal/jcp/133/9/10.1063/1.3476461&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/9/10.1063/1.3476461&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/9/10.1063/1.3476461'
Right1,Right2,Right3,