Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/133/9/10.1063/1.3481441
1.
1.M. Arbab and J. J. Finley, Int. J. Appl. Glass Sci. 1, 118 (2010).
http://dx.doi.org/10.1111/j.2041-1294.2010.00004.x
2.
2.S. F. Jacobs, D. Shough, and C. Connors, Appl. Opt. 23, 4237 (1984).
http://dx.doi.org/10.1364/AO.23.004237
3.
3.K. Richardson, D. Krol, and K. Hirao, Int. J. Appl. Glass Sci. 1, 74 (2010).
http://dx.doi.org/10.1111/j.2041-1294.2010.00008.x
4.
4.A. J. Ellison and I. A. Cornejo, Int. J. Appl. Glass Sci. 1, 87 (2010).
http://dx.doi.org/10.1111/j.2041-1294.2010.00009.x
5.
5.G. H. Beall, Annu. Rev. Mater. Sci. 22, 91 (1992).
http://dx.doi.org/10.1146/annurev.ms.22.080192.000515
6.
6.C. M. Jantzen, K. G. Brown, and J. B. Pickett, Int. J. Appl. Glass Sci. 1, 38 (2010).
http://dx.doi.org/10.1111/j.2041-1294.2010.00007.x
7.
7.R. Roy, D. K. Agrawal, and H. A. McKinstry, Annu. Rev. Mater. Sci. 19, 59 (1989).
http://dx.doi.org/10.1146/annurev.ms.19.080189.000423
8.
8.U. Senapati and A. K. Varshneya, J. Non-Cryst. Solids 185, 289 (1995).
http://dx.doi.org/10.1016/0022-3093(94)00534-6
9.
9.J. C. Phillips, J. Non-Cryst. Solids 34, 153 (1979).
http://dx.doi.org/10.1016/0022-3093(79)90033-4
10.
10.P. Boolchand, G. Lucovsky, J. C. Phillips, and M. F. Thorpe, Philos. Mag. 85, 3823 (2005).
http://dx.doi.org/10.1080/14786430500256425
11.
11.G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
12.
12.J. C. Mauro, Y. Z. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009).
13.
13.J. C. Mauro, D. C. Allan, and M. Potuzak, Phys. Rev. B 80, 094204 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.094204
14.
14.O. S. Narayanaswamy, J. Am. Ceram. Soc. 54, 491 (1971).
http://dx.doi.org/10.1111/j.1151-2916.1971.tb12186.x
15.
15.J. C. Mauro and A. K. Varshneya, J. Am. Ceram. Soc. 89, 1091 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2005.00803.x
16.
16.J. C. Mauro and A. K. Varshneya, Am. Ceram. Soc. Bull. 85, 25 (2006).
17.
17.J. C. Mauro, S. Soyer Uzun, W. Bras, and S. Sen, Phys. Rev. Lett. 102, 155506 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.155506
18.
18.D. J. Wales, J. Chem. Phys. 101, 3750 (1994).
http://dx.doi.org/10.1063/1.467559
19.
19.M. A. Miller, J. P. K. Doye, and D. J. Wales, J. Chem. Phys. 110, 328 (1999).
http://dx.doi.org/10.1063/1.478067
20.
20.F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 (1982).
http://dx.doi.org/10.1103/PhysRevA.25.978
21.
21.F. H. Stillinger, J. Chem. Phys. 88, 7818 (1988).
http://dx.doi.org/10.1063/1.454295
22.
22.P. G. Debenedetti, F. H. Stillinger, T. M. Truskett, and C. J. Roberts, J. Phys. Chem. B 103, 7390 (1999).
http://dx.doi.org/10.1021/jp991384m
23.
23.P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
24.
24.F. H. Stillinger and P. G. Debenedetti, J. Chem. Phys. 116, 3353 (2002).
http://dx.doi.org/10.1063/1.1434997
25.
25.J. C. Mauro and R. J. Loucks, Phys. Rev. B 76, 174202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.174202
26.
26.J. C. Mauro, R. J. Loucks, and P. K. Gupta, J. Phys. Chem. A 111, 7957 (2007).
http://dx.doi.org/10.1021/jp0731194
27.
27.J. C. Mauro, P. K. Gupta, and R. J. Loucks, J. Chem. Phys. 126, 184511 (2007).
http://dx.doi.org/10.1063/1.2731774
28.
28.F. H. Stillinger and P. G. Debenedetti, J. Phys. Chem. B 103, 4052 (1999).
http://dx.doi.org/10.1021/jp983831o
29.
29.F. H. Stillinger, J. Phys. Chem. B 102, 2807 (1998).
http://dx.doi.org/10.1021/jp973144h
30.
30.T. F. Middleton and D. J. Wales, J. Chem. Phys. 118, 4583 (2003).
http://dx.doi.org/10.1063/1.1545096
31.
31.J. C. Mauro, R. J. Loucks, and J. Balakrishnan, J. Phys. Chem. B 110, 5005 (2006).
http://dx.doi.org/10.1021/jp056803w
32.
32.J. C. Mauro, R. J. Loucks, J. Balakrishnan, and S. Raghavan, J. Chem. Phys. 126, 194103 (2007).
http://dx.doi.org/10.1063/1.2733674
33.
33.J. C. Mauro, R. J. Loucks, A. K. Varshneya, and P. K. Gupta, Sci. Model. Simul. 15, 241 (2008).
http://dx.doi.org/10.1007/s10820-008-9092-2
34.
34.C. P. Massen and J. P. K. Doye, Phys. Rev. E 75, 037101 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.037101
35.
35.P. S. Danielson, A. J. G. Ellison, and N. Venkataraman, U.S. Patent Application Publication No. US 2007/0191207 A1 (16 August 2007).
36.
36.J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).
http://dx.doi.org/10.1088/0034-4885/59/9/003
37.
37.J. C. Mauro, R. J. Loucks, and P. K. Gupta, J. Am. Ceram. Soc. 92, 75 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2008.02851.x
38.
38.Y. Z. Yue, J. de C. Christiansen, and S. L. Jensen, Chem. Phys. Lett. 357, 20 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00434-7
39.
39.M. Potuzak, A. R. L. Nichols, D. B. Dingwell, and D. A. Clague, Earth Planet. Sci. Lett. 270, 54 (2008).
http://dx.doi.org/10.1016/j.epsl.2008.03.018
40.
40.S. L. Webb, Chem. Geol. 96, 449 (1992).
http://dx.doi.org/10.1016/0009-2541(92)90072-D
41.
41.J. Gottsmann and D. B. Dingwell, Contrib. Mineral. Petrol. 139, 127 (2000).
http://dx.doi.org/10.1007/PL00007666
42.
42.M. J. Toplis and P. Richet, Contrib. Mineral. Petrol. 139, 672 (2000).
http://dx.doi.org/10.1007/s004100000171
43.
43.C. T. Moynihan, A. J. Easteal, D. C. Tran, J. A. Wilder, and E. P. Donvan, J. Am. Ceram. Soc. 59, 137 (1976).
http://dx.doi.org/10.1111/j.1151-2916.1976.tb09450.x
http://aip.metastore.ingenta.com/content/aip/journal/jcp/133/9/10.1063/1.3481441
Loading
/content/aip/journal/jcp/133/9/10.1063/1.3481441
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/133/9/10.1063/1.3481441
2010-09-03
2016-09-30

Abstract

A fundamental understanding of isobaric thermal expansion behavior is critical in all areas of glass science and technology. Current models of glass transition and relaxation behavior implicitly assume that the thermal expansion coefficient of glass-forming systems can be expressed as a sum of vibrational and configurational contributions. However, this assumption is made without rigorous theoretical or experimental justification. Here we present a detailed statistical mechanical analysis resolving the vibrational and configurational contributions to isobaric thermal expansion and show experimental proof of the separability of thermal expansion into vibrational and configurational components for Corning Jade®glass.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/133/9/1.3481441.html;jsessionid=LskkFLQPebcBlJocgTG9fPqF.x-aip-live-02?itemId=/content/aip/journal/jcp/133/9/10.1063/1.3481441&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/133/9/10.1063/1.3481441&pageURL=http://scitation.aip.org/content/aip/journal/jcp/133/9/10.1063/1.3481441'
Right1,Right2,Right3,