Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, Oxford, 2007);
1.U. Weiss, Quantum Dissipative Systems, 3rd ed. (World Scientific, Singapore, 2008).
2. K. H. Hughes, C. D. Christ, and I. Burghardt, J. Chem. Phys. 131, 024109 (2009);
2.K. H. Hughes, C. D. Christ, and I. Burghardt, J. Chem. Phys. 131, 124108 (2009).
3. P. Siegle, I. Goychuk, P. Talkner, and P. Hänggi, Phys. Rev. E 81, 011136 (2010).
4. A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).
5. H. Mori, Prog. Theor. Phys. 34, 399 (1965).
6. M. Dupuis, Prog. Theor. Phys. 37, 502 (1967);
6.P. Grigolini and G. P. Parravicini, Phys. Rev. B 25, 5180 (1982).
7. L. S. Cederbaum, E. Gindensperger, and I. Burghardt, Phys. Rev. Lett. 94, 113003 (2005).
8. A. W. Chin, A. Rivas, S. F. Huelga, and M. B. Plenio, J. Math. Phys. 51, 092109 (2010).
9. A. J. Leggett, Phys. Rev. B 30, 1208 (1984).
10. A. Garg, J. N. Onuchic, and V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985).
11.Here and in the following we define the Fourier transform as .
12. N. I. Muskhelishvili, Singular Integral Equation (P. Noordhoff, Groningen, 1953).
13. R. J. Rubin, Phys. Rev. 131, 964 (1963).
14. M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys. Rev. Lett. 101, 150402 (2008);
14.H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009);
14.A. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050403 (2010).

Data & Media loading...


Article metrics loading...



Non-Markovian processes can often be turned Markovian by enlarging the set of variables. Here we show, by an explicit construction, how this can be done for the dynamics of a Brownian particle obeying the generalized Langevin equation. Given an arbitrary bath spectral density , we introduce an orthogonal transformation of the bath variables into effective modes, leading stepwise to a semi-infinite chain with nearest-neighbor interactions. The transformation is uniquely determined by and defines a sequence of residual spectral densities describing the interaction of the terminal chain mode, at each step, with the remaining bath. We derive a simple one-term recurrence relation for this sequence and show that its limit is the quasi-Ohmic expression provided by the Rubin model of dissipation. Numerical calculations show that, irrespective of the details of , convergence is fast enough to be useful in practice for an effective Ohmic reduction of the dissipative dynamics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd