Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. J. Christ, L. D. Hawkins, M. D. Lewis, and Y. Kishi, in Carbohydrate-based Drug Discovery, edited by C.-H. Wong (Wiley-VCH Verlag GmbH & Co. KGaA, Berlin, 2003), Vol. 1, pp. 341355
1.C. Alexander and E. T. Rietschel, J. Endotoxin Res. 7, 167 (2000).
2. C. R. Raetz and C. Whitfield, Annu. Rev. Biochem. 71, 635 (2002);
2.J. L. Ding, Eur. J. Biochem. 276, 837 (2000).
3. C. A. Faunce, P. Quitschau, M. Thies, T. Scheidt, and H. H. Paradies, in “Old Herborn University Seminaron Probiotics: Bacteria & Bacterial Fragments as Immuno-Modulatory Agents (Herborn Litterae, Herborn, FRG, 2002) Vol. 15, pp. 95120.
4. Nosocomial Infections, Challenges in Vaccine Develop, organized by M. Watson (The New York Academy of Sciences, NYC, New York, 2010).
5. C. R. Alving, Immunobiology 187, 430 (1993);
5.N. Thieblemont, R. Thieringer, and S. D. Wright, Immunity 8, 771 (1998).
6. C. A. Faunce, H. Reichelt, H. H. Paradies, P. Quitschau, and K. Zimmermann, J. Chem. Phys. 122, 214727 (2005).
7. C. A. Faunce, P. Quitschau, and H. H. Paradies, J. Phys. Chem. B 107, 2214 (2003).
8. C. A. Faunce, H. Reichelt, H. H. Paradies, P. Quitschau, V. Rusch, and K. Zimmermann, J. Phys. Chem. B 107, 9943 (2003).
9. C. A. Faunce and H. H. Paradies, Soft Matter-Chemistry and Physics for Assemblages, Film and Forms. MRS Symposium Proceedings No 947E, A-03-11 (Materials Research Society, Pittsburgh, 2007).
10. L. R. Kotra, D. Golemi, N. A. Amoro, G.-J. Liu, and S. Mohasbery, J. Am. Chem. Soc. 121, 807 (1999).
11. C. A. Faunce and H. H. Paradies, J. Chem. Phys. 131, 244708 (2009).
12. C. A. Faunce and H. H. Paradies, J. Chem. Phys. 128, 065105 (2008).
13. E. J. Conway and E. O‘Malley, Biochem. J. 36, 655 (1942).
14. H. H. Paradies, D. E. Kuckuck, G. Klotz, and E. Deusser, Hoppe Seyler's Z. Physiol. Chem. 66, 495 (1974).
15. T. C. Huang, H. Toraya, T. N. Blanton, and Y. Wu, J. Appl. Crystallogr. 26, 180 (1993).
16. OVERLAP version D, A. Le Bail, Laboratoire des Fluorures, Université du Maine, 72017 Le Mans Cedex, France, July 1999;
16.C. Giacovazzo, Acta Crystallogr., Sect. A: Found. Crystallogr. 52, 331 (1996).
17. M. A. Neumann, J. Appl. Crystallogr. 36, 356 (2003).
18. ACCELRYS version 4.4, Accelrys, San Diego, USA, 2009.
19. A. C. Larson and R. B. von Dreele, “GSAS System,” Los Alamos (NM), Report LAUR 86-748, 2000;
19.J. Rodriguez-Carvajal, Physica B 192, 55 (1993).
20. D. B. Wiles and R. A. Young, J. Appl. Crystallogr. 14, 149 (1981).
21. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Revision C.02, Gaussian, Inc., Pittsburgh, PA (2004), in S6 of Ref. 36.
22. International Tables for X-Ray Crystallography, edited by N. F. M. Henry and K. Lonsdale (The Kynoch Press, Birmingham, 1965), Vol. 1.
22.In the new edition, International Tables for Crystallography, edited by T. Hahn (D. Reidel Publishing Co., Dordrecht, The Netherlands, 1983).
23. L. Palatinus, Acta Crystallogr., Sect. A: Found. Crystallogr. 60, 604 (2004).
24. V. Luzzati, Acta Crystallogr. 5, 802 (1952).
25. F. Schröder, M. Levitt, and A. T. Brunger, Nature (London) 464, 1218 (2010).
26. E. H. Stelzer, Nature (London) 417, 806 (2002).
27. A. Wlodawer, J. Lubkowski, W. Minor, and M. Jaskolski, Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 1041 (2010).
28. R. H. Pearson and L. Palmer, Nature (London) 281, 499 (1979);
28.D. Chapman, Chem. Rev. 62, 433 (1962);
28.L. Di and D. M. Small, J. Lipid Res. 34, 1611 (1993).
29. K. Larson, Acta Crystallogr. 16, 741 (1963);
29.M. Ramakrishnan and M. J. Swamy, Biochim. Biophys. Acta 1418, 261 (1999).
30. P. K. Tarafdor and M. J. Swamy, Chem. Phys. Lipids 162, 25 (2009);
30.R. K. Kamlekar and M. J. Swamy, J. Lipid Res. 47, 1424 (2006);
30.R. K. Kamlekar, P. K. Tarafdor, and M. J. Swamy, J. Lipid Res. 284, 34065 (2009).
31. K. Okuyama, Y. Soboi, N. Iijima, K. Hirabayaski, T. Kunitake, and T. Kajiyama, Bull. Chem. Soc. Jpn. 61, 1485 (1988);
31.H. H. Paradies and S. F. Clancy, Rigaku J. 17, 20 (2000).
32. H. H. Paradies and F. Habben, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 49, 1387 (1993);
32.B. Alonso, T. Mineva, P. Gaveau, H. H. Paradies, D. Massiot, and P. Florian, J. Phys. Chem. B 113(35), 11906 (2009).
33. P. R. Maulik, M. J. Ruocco, and G. Shipley, Chem. Phys. Lipids 105, 43 (2000);
33.S. Abrahamsson, D. Daklén, H. Löfgren, and L. Pascher, Prog. Chem. Fats Other Lipids 16, 125 (1978).
34. M. G. Nikolaides, A. R. Bausch, M. P. Brenner, C. Gay, and D. A. Weitz, Nature (London) 420, 299 (2002);
34.P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, International Series of Monographs on Physics 83 (Oxford Science Publications–Clarendon, Oxford, 1993);
34.F. Samisu, Y. Takanishi, and J. Yamamoto, Nature Mater. 9, 816 (2010).
35. P. Pieranski, Phys. Rev. Lett. 45, 569 (1980);
35.D. C. Morse and T. A. Witten, Europhys. Lett. 22, 549 (1993).
36.See supplementary materials at for S1: atomic numbering scheme for the lipid A-monophosphate; S2: Table I experimental (dobs) and calculated (dcalc) spacings for the P21 and C2 lipid A-monophosphate polymorphs; S3: fractional atomic coordinates for nonhydrogen atoms of lipid A-monophosphate for the P21 and C2 polymorphs; S4: torsion angles of the diglucosamine monophosphate of the two lipid A-monophosphate polymorphs; S5: list of hydrogen bonds, distances, donor and acceptor angles; S6: full Ref. 31. [Supplementary Material]

Data & Media loading...


Article metrics loading...



Single crystalline clusters of lipid A-monophosphate were grown from organic dispersions containing 5–15% (v/v) water at various volume fractions, ϕ, and temperatures. The morphology of the single lipid A-monophosphate crystals was either rhombohedral or hexagonal. The hexagonal crystals were needlelike or cylindrical in shape, with the long dimension parallel to the c axis of the unit cell. The crystalline clusters were studied using electron microscopy and x-ray powderdiffraction. Employing molecular location methods following a Rietveld refinement and whole-pattern refinement revealed two monoclinic crystal structures in the space groups P21 and C2, both converged with R F = 0.179. The two monoclinic crystal structures were packing (hydrocarbon chains) and conformational (sugar) polymorphs. Neither of these two structures had been encountered previously. Only intramolecular hydrogen bonding was observed for the polymorphs, which were located between the amide and the carboxyl groups. Another crystalline structure was found in the volume-fraction range 2.00 × 10−3ϕ ≤ 2.50 × 10−3, which displayed hexagonal symmetry. The hexagonal symmetry of the self-assembled lipid A-monophosphate crystalline phase might be reconciled with the monoclinic symmetry found at low-volume-fractions. Therefore, lowering the symmetry from cubic, i.e., Ia d, to rhombohedral R m, and finally to the monoclinic space group C2 was acceptable if the lipid A-monophosphate anion was completely orientationally ordered.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd