Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Vajda, S. Lee, K. Sell, I. Barke, A. Kleibert, V. von Oeynhausen, K. H. Meiwes-Broer, A. F. Rodríguez, J. W. Elam, M. M. Pellin, B. Lee, S. Seifert, and R. E. Winans, J. Chem. Phys. 131, 121104 (2009).
2. L. M. Molina, S. Lee, K. Sell, G. Barcaro, A. Fortunelli, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, M. J. Pellin, I. Barke, V. von Oeynhausen, Y. Lei, R. J. Meyer, J. A. Alonso, A. Fraile Rodríguez, A. Kleibert, S. Giorgio, C. R. Henry, K.-H. Meiwes-Broer, and S. Vajda, Catal. Today 160, 116 (2011).
3. S. Vajda, M. J. Pellin, J. P. Greeley, C. L. Marshall, L. A. Curtiss, G. A. Ballentine, J. W. Elam, S. Catillon-Mucherie, P. C. Redfern, F. Mehmood, and P. Zapol, Nature Mater. 8, 213 (2009).
4. W. E. Kaden, T. Wu, W. A. Kunkel, and S. L. Anderson, Science 326, 826 (2009).
5. K. Judai, S. Abbet, A. S. Wörz, U. Heiz, and C. R. Henry, J. Am. Chem. Soc. 126, 2732 (2004).
6. S. Lee, B. Lee, F. Mehmood, S. Seifert, J. A. Libera, J. W. Elam, J. Greeley, P. Zapol, L. A. Curtiss, M. J. Pellin, P. C. Stair, R. E. Winans, and S. Vajda, J. Phys. Chem. C 114, 10342 (2010).
7. Y. Lei, F. Mehmood, S. Lee, J. P. Greeley, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, R. J. Meyer, P. C. Redfern, D. Teschner, R. Schlögl, M. J. Pellin, L. A. Curtiss, and S. Vajda, Science 328, 224 (2010).
8. C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, J. Am. Chem. Soc. 131, 538 (2009).
9.See for US Environmental Protection Agency, Assessment of the Worldwide Market Potential for Oxidizing Coal Mine Ventilation Air Methane.
10. B. Stasinska, A. Machocki, K. Antoniak, M. Rotko, J. L. Figueiredo, and F. Goncalves, Catal. Today 137, 329 (2008).
11. D. Ciuparu, M. R. Lyubovsky, E. Altman, L. D. Pfefferle, and A. Datye, Catal. Rev. 44, 593 (2002).
12. P. Forzatti, Catal. Today 83, 3 (2003).
13. G. Centi, J. Mol. Catal. A: Chem. 173, 287 (2001).
14. L. M. T. Simplicio, S. T. Brandão, D. Domingos, F. Bozon-Verduraz, and E. A. Sales, Appl. Catal., A 360, 2 (2009).
15. F. H. Ribeiro, M. Chow, and R. A. Dallabetta, J. Catal. 146, 537 (1994).
16. P. Araya, S. Guerrero, J. Robertson, and F. J. Gracia, Appl. Catal., A 283, 225 (2005).
17. R. F. Hicks, H. H. Qi, M. L. Young, and R. G. Lee, J. Catal. 122, 280 (1990).
18. K. Fujimoto, F. H. Ribeiro, M. Avalos-Borja, and E. Iglesia, J. Catal. 179, 431 (1998).
19. M. A. Newton, C. Belver-Coldeira, A. Martínez-Arias, and M. Fernández-García, Nature Mater. 6, 528 (2007).
20. S. J. Carroll, P. D. Nellist, R. E. Palmer, S. Hobday, and R. Smith, Phys. Rev. Lett. 84, 2654 (2000).
21. S. J. Carroll, S. Pratontep, M. Streun, R. E. Palmer, S. Hobday, and R. Smith, J. Chem. Phys. 113, 7723 (2000).
22. R. E. Palmer, S. Pratontep, and H. G. Boyen, Nature Mater. 2, 443 (2003).
23. S. Pratontep, S. J. Carroll, C. Xirouchaki, M. Streun, and R. E. Palmer, Rev. Sci. Instrum. 76, 045103 (2005).
24. B. von Issendorff, and R. E. Palmer, Rev. Sci. Instrum. 70, 4497 (1999).
25. S. J. Carroll, P. Weibel, B. von Issendorff, L. Kuipers, R. E. Palmer, J. Phys. Condens. Matter 8, L617 (1996).
26. S. Gibilisco, M. Di Vece, S. Palomba, G. Faraci, and R. E. Palmer, J. Chem. Phys. 125, 084704 (2006).
27. M. Di Vece, S. Palomba, and R. E. Palmer, Phys. Rev. B 72, 073407 (2005).
28. R. Smith, C. Nock, S. D. Kenny, J. J. Belbruno, M. Di Vece, S. Palomba, and R. E. Palmer, Phys. Rev. B 73, 125429 (2006).
29. F. Yin, C. Xirouchaki, Q. Guo, and R. E. Palmer, Adv. Mater 17, 731 (2005).
30. D. Andreeva, V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, and A. Travlos, Catal. Today 72, 51 (2002).
31. R. J. Gorte and S. Zhao, Catal. Today 104, 18 (2005).
32. Y. Zhai, D. Pierre, R. Si, W. Deng, P. Ferrin, A. U. Nilekar, G. Peng, J. A. Herron, D. C. Bell, H. Saltsburg, M. Mavrikakis, and M. Flytzani-Stephanopoulos, Science 329, 1633 (2010).
33. D. J. Kenny, R. E. Palmer, C. F. Sanz-Navarro, and R. Smith, J. Phys. Condens. Matter 14, L185 (2002).
34. S. Pratontep, P. Preece, C. Xirouchaki, R. E. Palmer, C. F. Sanz-Navarro, S. D. Kenny, and R. Smith, Phys. Rev. Lett. 90, 055503 (2003).

Data & Media loading...


Article metrics loading...



The stability of model catalysts based on size-selected Pd clusters supported on graphitesurfaces has been explored under realistic conditions for catalyticoxidation of methane at mild temperatures. The experimental results show that aggregated films of nanoparticles are highly unstable, but clusters pinned to the surface in the submonolayer coverage regime are much more stable against sintering. The degree of sintering of the pinned clusters, which does occur, proceeds by the release of clusters from their pinning sites. The suppression of sintering depends on the cluster deposition energy with respect to the pinning threshold.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd