Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/134/16/10.1063/1.3582900
1.
1. N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008) (Paper I).
http://dx.doi.org/10.1063/1.2982247
2.
2. N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008) (Paper II).
http://dx.doi.org/10.1063/1.2982249
3.
3. T. B. Schrøder, N. P. Bailey, U. R. Pedersen, N. Gnan, and J. C. Dyre, J. Chem. Phys. 131, 234503 (2009) (Paper III).
http://dx.doi.org/10.1063/1.3265955
4.
4. N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009) (Paper IV).
http://dx.doi.org/10.1063/1.3265957
5.
5. U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015701
6.
6. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987).
7.
7. J. P. Hansen and J. R. McDonald, Theory of Simple Liquids, 3ed ed. (Academic, New York, 2005).
8.
8. W. Kauzmann, Chem. Rev. 43, 219 (1948).
http://dx.doi.org/10.1021/cr60135a002
9.
9. G. Harrison, The Dynamic Properties of Supercooled Liquids (Academic, New York, 1976).
10.
10. S. Brawer, Relaxation in Viscous Liquids and Glasses (American Ceramic Society, Columbus, OH, 1985).
11.
11. I. Gutzow and J. Schmelzer, The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization (Springer, Berlin, 1995).
12.
12. M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
http://dx.doi.org/10.1021/jp953538d
13.
13. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113 (2000).
http://dx.doi.org/10.1063/1.1286035
14.
14. C. Alba-Simionesco, C. R. Acad. Sci., Ser. IV 2, 203 (2001).
http://dx.doi.org/10.1016/S1296-2147(01)01165-9
15.
15. P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
16.
16. K. Binder and W. Kob, Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics (World Scientific, Singapore, 2005).
17.
17. F. Sciortino, J. Stat. Mech. P05015 (2005).
http://dx.doi.org/10.1088/1742-5468/2005/05/P05015
18.
18. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.953
19.
19. N. L. Ellegaard, T. Christensen, P. V. Christiansen, N. B. Olsen, U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 126, 074502 (2007).
http://dx.doi.org/10.1063/1.2434963
20.
20. N. P. Bailey, T. Christensen, B. Jakobsen, K. Niss, N. B. Olsen, U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, J. Phys.: Condens. Matter 20, 244113 (2008).
http://dx.doi.org/10.1088/0953-8984/20/24/244113
21.
21. T. Christensen and J. C. Dyre, Phys. Rev. E 78, 021501 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.021501
22.
22. U. R. Pedersen, T. Christensen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. E 77, 011201 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.011201
23.
23. A. Tölle, Rep. Prog. Phys. 64, 1473 (2001).
http://dx.doi.org/10.1088/0034-4885/64/11/203
24.
24. C. Dreyfus, A. Aouadi, J. Gapinski, M. Matos-Lopes, W. Steffen, A. Patkowski, and R. M. Pick, Phys. Rev. E 68, 011204 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.011204
25.
25. C. Alba-Simionesco, A. Cailliaux, A. Alegria, and G. Tarjus, Europhys. Lett. 68, 58 (2004).
http://dx.doi.org/10.1209/epl/i2004-10214-6
26.
26. R. Casalini and C. M. Roland, Phys. Rev. E 69, 062501 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.062501
27.
27. C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. Phys. 68, 1405 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R03
28.
28. T. B. Schrøder, U. R. Pedersen, N. P. Bailey, S. Toxvaerd, and J. C. Dyre, Phys. Rev. E 80, 041502 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041502
29.
29. D. Coslovich and C. M. Roland, J. Phys. Chem. B 112, 1329 (2008).
http://dx.doi.org/10.1021/jp710457e
30.
30. D. Coslovich and C. M. Roland, J. Chem. Phys. 130, 014508 (2009).
http://dx.doi.org/10.1063/1.3054635
31.
31. W. G. Hoover, D. A. Young, and E. Grover, J. Chem. Phys. 56, 2207 (1972).
http://dx.doi.org/10.1063/1.1677521
32.
32. Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita, and A. Ueda, Prog. Theor. Phys. 52, 1105 (1974).
http://dx.doi.org/10.1143/PTP.52.1105
33.
33. L. V. Woodcock, Phys. Rev. Lett. 54, 1513 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.1513
34.
34. J. L. Barrat, J. P. Hansen, G. Pastore, and E. M. Waisman, J. Chem. Phys. 86, 6360 (1987).
http://dx.doi.org/10.1063/1.452422
35.
35. P. G. Debenedetti, F. H. Stillinger, T. M. Truskett, and C. J. Roberts, J. Phys. Chem. B 103, 7390 (1999).
36.
36. E. La Nave, F. Sciortino, P. Tartaglia, M. S. Shell, and P. G. Debenedetti, Phys. Rev. E 68, 032103 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.032103
37.
37. R. J. Speedy, J. Phys.: Condens. Matter 15, S1243 (2003).
http://dx.doi.org/10.1088/0953-8984/15/11/342
38.
38. M. S. Shell, P. G. Debenedetti, E. La Nave, and F. Sciortino, J. Chem. Phys. 118, 8821 (2003).
http://dx.doi.org/10.1063/1.1566943
39.
39. G. Rickayzen and D. M. Heyes, Phys. Rev. E 71, 061204 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.061204
40.
40. A. C. Branka and D. M. Heyes, Phys. Rev. E 74, 031202 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.031202
41.
41. R. Casalini, U. Mohanty, and C. M. Roland, J. Chem. Phys. 125, 014505 (2006).
http://dx.doi.org/10.1063/1.2206582
42.
42. D. M. Heyes and A. C. Branka, Phys. Chem. Chem. Phys. 9, 5570 (2007).
http://dx.doi.org/10.1039/b709053f
43.
43. Unless otherwise stated, simulations were performed using a newly developed molecular dynamics code optimized for NVIDIA graphics cards. The code is available as open source at http://rumd.org. Potentials were cut and shifted at 2.5σαβ. Reported potentials and virials do not include contributions beyond the cut-off.
44.
44. N. Gnan, C. Maggi, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 104, 125902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.125902
45.
45. W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1376
46.
46. G. Wahnström, Phys. Rev. A 44, 3752 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.3752
47.
47. The simulations reported in Figs. 7 and 8 were performed using Gromacs, H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, Comp. Phys. Comm. 91, 43 (1995);
http://dx.doi.org/10.1016/0010-4655(95)00042-E
47.E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Mod. 7, 306 (2001).
http://dx.doi.org/10.1007/s008940100045
48.
48. M. Ross, Phys. Rev. 184, 233 (1969).
http://dx.doi.org/10.1103/PhysRev.184.233
49.
49. A. Ahmed and R. J. Sadus, J. Chem. Phys. 131, 174504 (2009).
http://dx.doi.org/10.1063/1.3253686
50.
50. E. A. Mastny and J. J. de Pablo, J. Chem. Phys. 127, 104504 (2007).
http://dx.doi.org/10.1063/1.2753149
51.
51. F. H. Stillinger, J. Chem. Phys. 115, 5208 (2001).
http://dx.doi.org/10.1063/1.1394922
52.
52. Y. Rosenfeld and P. Tarazona, Mol. Phys. 95, 141 (1998).
http://dx.doi.org/10.1080/00268979809483145
53.
53. F. Sciortino, W. Kob, and P. Tartaglia, J. Phys.: Condens. Matter 12, 6525 (2000).
http://dx.doi.org/10.1088/0953-8984/12/29/324
54.
54. U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 105, 157801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.157801
55.
55. B. Coluzzi, G. Parisi, and P. Verrocchio, J. Chem. Phys. 112, 2933 (2000).
http://dx.doi.org/10.1063/1.480866
56.
56. U. R. Pedersen, T. B. Schrøder, J. C. Dyre, and P. Harrowell, Phys. Rev. Lett. 104, 105701 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.105701
57.
57. U. R. Pedersen, G. H. Peters, T. B. Schrøder, and J. C. Dyre, J. Phys. Chem. B 114, 2124 (2010).
http://dx.doi.org/10.1021/jp9086865
58.
58. D. Coslovich and C. M. Roland, J. Chem. Phys. 131, 151103 (2009).
http://dx.doi.org/10.1063/1.3250938
59.
59. L. Berthier and G. Tarjus, e-print arXiv:1103.0432 (2011).
60.
60. L. Angelani, G. Foffi, F. Sciortino, and P. Tartaglia, J. Phys.: Condens. Matter 17, L113 (2005).
http://dx.doi.org/10.1088/0953-8984/17/12/L02
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/16/10.1063/1.3582900
Loading
/content/aip/journal/jcp/134/16/10.1063/1.3582900
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/16/10.1063/1.3582900
2011-04-28
2016-12-09

Abstract

This series of papers is devoted to identifying and explaining the properties of strongly correlating liquids, i.e., liquids with more than 90% correlation between their virial and potential energy fluctuations in the ensemble. Paper IV [N. Gnan et al. , J. Chem. Phys.131, 234504 (2009)] showed that strongly correlating liquids have “isomorphs,” which are curves in the phase diagram along which structure, dynamics, and some thermodynamic properties are invariant in reduced units. In the present paper, using the fact that reduced-unit radial distribution functions are isomorph invariant, we derive an expression for the shapes of isomorphs in the phase diagram of generalized Lennard-Jones systems of one or more types of particles. The isomorph shape depends only on the Lennard-Jones exponents; thus all isomorphs of standard Lennard-Jones systems (with exponents 12 and 6) can be scaled onto a single curve. Two applications are given. One tests the prediction that the solid-liquid coexistence curve follows an isomorph by comparing to recent simulations by Ahmed and Sadus [J. Chem. Phys.131, 174504 (2009)]. Excellent agreement is found on the liquid side of the coexistence curve, whereas the agreement is less convincing on the solid side. A second application is the derivation of an approximate equation of state for generalized Lennard-Jones systems by combining the isomorph theory with the Rosenfeld-Tarazona expression for the temperature dependence of the potential energy on isochores. It is shown that the new equation of state agrees well with simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/16/1.3582900.html;jsessionid=BkcrKyeFdGQQ8VnTnDsdOWgb.x-aip-live-06?itemId=/content/aip/journal/jcp/134/16/10.1063/1.3582900&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/134/16/10.1063/1.3582900&pageURL=http://scitation.aip.org/content/aip/journal/jcp/134/16/10.1063/1.3582900'
Right1,Right2,Right3,