1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Electric-field-induced dissociation of heavy Rydberg ion-pair states
Rent:
Rent this article for
USD
10.1063/1.3581832
/content/aip/journal/jcp/134/17/10.1063/1.3581832
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/17/10.1063/1.3581832
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Dissociation probabilities for H+⋅⋅⋅F ion pairs in the selected n = 3000 |nm〉 and |nkm〉 initial states indicated in an applied field that rises linearly from 0 to 57 V cm−1 in 2.5 μs. The applied field is expressed in terms of the adiabatic dissociation threshold, F ad = 12 V cm−1. The inset shows the field-free classical orbit for an ℓ = 10 m = 1 state over ∼9 Kepler periods. Core scattering leads to marked changes in the orientation of the orbit, i.e., to precession. The inset also includes a contour plot of the potential (−1/r + zF) showing the saddle point.

Image of FIG. 2.
FIG. 2.

Dissociation characteristics of H+⋅⋅⋅Fion-pair states with n = 2900, ℓ = 10, m = 1 created in a dc field F dc = ±1.2 V cm−1 and subject to a ramped field that rises linearly from 0 to 57 V cm−1 in 2.5 μs. Both fields are applied along the z axis. Also included are results for F dc = −1.2 V cm−1 in the presence of a small transverse stray field F stray = F dc/20. The ramped field is turned on following a time delay of t d = 260 ns after photoexcitation. (a) and (b) The dissociation probability as functions of time and field, respectively, (c) the applied field, and (d) the derivative of the curves in (b).

Image of FIG. 3.
FIG. 3.

Time evolution of L z for six random initial trajectories corresponding to H+⋅⋅⋅Fion-pair states with n = 2900, ℓ = 10, m = 1 created in the presence of a dc field F dc = −1.2 V cm−1 and a small transverse stray field F stray = F dc/20 and then subject, following delay times t d of (a) 290 and (b) 200 ns, to a ramped field applied along the +z axis that rises from 0 to 57 V cm−1 in 2.5 μs. The corresponding distributions in L z 500 ns after the ramped field is turned on are shown in (c) and (d).

Image of FIG. 4.
FIG. 4.

(a) Dissociation probabilities and (b)–(f) dissociation probabilities per unit time for the delay times t d indicated and the same field conditions as in Fig. 3.

Image of FIG. 5.
FIG. 5.

Dissociation probabilities for K+⋅⋅⋅Cl ion pairs (solid lines) with n = 5000 and H+⋅⋅⋅F ion pairs (dashed lines) with n = 3000 as a function of applied field. (a) Comparison of results for K+⋅⋅⋅Cland H+⋅⋅⋅F ion pairs in well defined |nm〉 initial states with the values of ℓ indicated and ℓ = m. (b) Comparison of results for a microcanonical distribution of K+⋅⋅⋅Cl and H+⋅⋅⋅F states, together with the prediction for a pure Coulomb potential. The applied field slew rates used for H+⋅⋅⋅F and K+⋅⋅⋅Cl ion pairs are 23 V cm−1/μs and 5 kV cm−1/μs, respectively. The angular momentum is expressed in scaled units ℓ/n.

Loading

Article metrics loading...

/content/aip/journal/jcp/134/17/10.1063/1.3581832
2011-05-02
2014-04-23
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electric-field-induced dissociation of heavy Rydberg ion-pair states
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/17/10.1063/1.3581832
10.1063/1.3581832
SEARCH_EXPAND_ITEM