Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Frenkel, Physica A 263, 26 (1999);
1.M. G. Noro, N. Kern, and D. Frenkel, Europhys. Lett. 48, 332 (1999).
2. A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987).
3. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992);
3.J. Lee, Phys. Rev. Lett. 71, 211 (1993);
3.F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
4. E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992);
4.A. P. Lyubartsev, A. A. Martinovski, S. V. Shevkunov, and. P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992).
5. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 75, 2607 (1986);
5.K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).
6. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988);
6.A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).
7. W. G. Hoover and F. H. Ree, J. Chem. Phys. 47, 4873 (1967);
7.W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968).
8. D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81, 3188, (1984).
9. M. A. Barroso and A. L. Ferreira, J. Chem. Phys. 116, 7145 (2002).
10. J. Chang and S. I. Sandler, J. Chem. Phys. 118, 8390 (2003).
11. G. Orkoulas and D. P. Noon, J. Chem. Phys. 131, 161106 (2009).
12. N. B. Wilding and A. D. Bruce, Phys. Rev. Lett. 85, 5138 (2000).
13. J. R. Errington, J. Chem. Phys. 120, 3130 (2004);
13.G. C. McNeil-Watson and N. B. Wilding, J. Chem. Phys. 124, 064504 (2006).
14. G. Grochola, J. Chem. Phys. 120, 2122, (2004);
14.D. M. Elke, J. F. Brennecke, and E. J. Maginn, J. Chem. Phys. 122, 014115 (2005).
15. D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic, New York, 2002).
16. G. Orkoulas, Mol. Simul. 36, 516 (2010);
16.D. P. Noon and G. Orkoulas, Mol. Simul. 36, 535 (2010).
17. G. Orkoulas, M. E. Fisher, and A. Z. Panagiotopoulos, Phys. Rev. E 63, 051507 (2001).
18. K. Binder, Rep. Prog. Phys. 50, 783 (1987);
18.K. Binder, Rep. Prog. Phys. 60, 487 (1997).
19. L. V. Woodcock, Faraday Discuss. 106, 325 (1997).
20. J.-P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969);
20.W. G. Hoover, M. Ross, K. W. Johnson, D. Henderson, J. A. Barker, and B. C. Brown, J. Chem. Phys. 52, 4931 (1970).
21. D. A. Kofke, Mol. Phys. 78, 1331 (1993);
21.D. A. Kofke, J. Chem. Phys. 98, 4149 (1993).
22. G. Orkoulas, J. Chem. Phys. 133, 111104 (2010).

Data & Media loading...


Article metrics loading...



Despite recent advances, precise simulation of freezing transitions continues to be a challenging task. In this work, a simulation method for fluid-solid transitions is developed. The method is based on a modification of the constrained cell model which was proposed by Hoover and Ree [J. Chem. Phys.47, 4873 (1967)]10.1063/1.1701730. In the constrained cell model, each particle is confined in a single Wigner-Seitz cell. Hoover and Ree pointed out that the fluid and solid phases can be linked together by adding an external field of variable strength. High values of the external field favor single occupancy configurations and thus stabilize the solid phase. In the present work, the modified cell model is simulated in the constant-pressure ensemble using tempering and histogram reweighting techniques. Simulation results on a system of hard spheres indicate that as the strength of the external field is reduced, the transition from solid to fluid is continuous at low and intermediate pressures and discontinuous at high pressures. Fluid-solid coexistence for the hard-sphere model is established by analyzing the phase transition of the modified model in the limit in which the external field vanishes. The coexistence pressure and densities are in excellent agreement with current state-of-the-art techniques.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd