Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/134/18/10.1063/1.3589863
1.
1. P. Jonkheijm, D. Weinrich, H. Schroeder, C. M. Niemeyer, and H. Waldmann, Angew. Chem., Int. Ed. 47, 9618 (2008).
http://dx.doi.org/10.1002/anie.200801711
2.
2. U. Bilitewski, Anal. Chim. Acta 568, 232 (2006).
http://dx.doi.org/10.1016/j.aca.2005.12.073
3.
3. H. Zhu and M. Snyder, Curr. Opin. Chem. Biol. 7, 55 (2003).
http://dx.doi.org/10.1016/S1367-5931(02)00005-4
4.
4. M. Uttamchandani and S. Q. Yao, Curr. Pharm. Des. 14, 2428 (2008).
http://dx.doi.org/10.2174/138161208785777450
5.
5. M. Cretich, F. Damina, G. Pirria, and M. Chiari, Biomol. Eng. 23, 77 (2006).
http://dx.doi.org/10.1016/j.bioeng.2006.02.001
6.
6. N. Adam, The Physics and Chemistry of Surfaces (Oxford University Press, London, 1941).
7.
7. D. Cheesman and J. Davies, Adv. Protein Chem. 9, 439 (1954).
http://dx.doi.org/10.1016/S0065-3233(08)60211-9
8.
8. A. Rothen, Adv. Protein Chem. 3, 123 (1947).
http://dx.doi.org/10.1016/S0065-3233(08)60078-9
9.
9. A. P. L. Brun, S. A. Holt, D. S. Shah, C. F. Majkrzak, and J. H. Lakey, Eur. Biophys. J. 37, 639 (2008).
http://dx.doi.org/10.1007/s00249-008-0291-2
10.
10. K. K. Chittur, Biomaterials 19, 357 (1998).
http://dx.doi.org/10.1016/S0142-9612(97)00223-8
11.
11. F. Evers, C. Reichhart, R. Steitz, M. Tolan, and C. Czeslik, Phys. Chem. Chem. Phys. 12, 4375 (2010).
http://dx.doi.org/10.1039/b925134k
12.
12. S. Aoyagi and M. D. Kudo, Biosens. Bioelectron. 20, 1626 (2005).
http://dx.doi.org/10.1016/j.bios.2004.06.040
13.
13. S. Aoyagi, Surf. Interface Anal. 41, 136 (2009).
http://dx.doi.org/10.1002/sia.2989
14.
14. R. Chatterjee, Appl. Surf. Sci. 231, 437 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.03.164
15.
15. B. Hagenhoff, Biosens. Bioelectron. 10, 885 (1995).
http://dx.doi.org/10.1016/0956-5663(95)99226-B
16.
16. Y.-P. Kim, M.-Y. Hong, H. K. Shon, D. W. Moon, H.-S. Kim, and T. G. Lee, Appl. Surf. Sci. 252, 6801 (2006).
http://dx.doi.org/10.1016/j.apsusc.2006.02.203
17.
17. J.-W. Park, H. Min, Y.-P. Kim, H. K. Shon, J. Kim, D. W. Moon, and T. G. Lee, Surf. Interface Anal. 41, 694 (2009).
http://dx.doi.org/10.1002/sia.3049
18.
18. F. Liu, M. Dubey, H. Takahashi, D. G. Castner, and D. W. Grainger, Anal. Chem. 82, 2947 (2010).
http://dx.doi.org/10.1021/ac902964q
19.
19. H. Wang, D. G. Castner, B. D. Ratner, and S. Jiang, Langmuir 20, 1877 (2004).
http://dx.doi.org/10.1021/la035376f
20.
20. M. Agashe, V. Raut, S. J. Stuart, and R. A. Latour, Langmuir 21, 1103 (2005).
http://dx.doi.org/10.1021/la0478346
21.
21. K. Battle, E. A. Salter, R. W. Edmunds, and A. Wierzbicki, J. Cryst. Growth 312, 1257 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2009.12.038
22.
22. J. C. Hower, Y. He, M. T. Bernards, and S. Jiang, J. Chem. Phys. 125, 214704 (2006).
http://dx.doi.org/10.1063/1.2397681
23.
23. R. A. Latour, Biointerphases 3, FC2 (2008).
http://dx.doi.org/10.1116/1.2965132
24.
24. L. Li, S. Chen, J. Zheng, B. D. Ratner, and S. Jiang, J. Phys. Chem. B 109, 2934 (2005).
http://dx.doi.org/10.1021/jp0473321
25.
25. G. Raffaini and F. Ganazzoli, Langmuir 19, 3403 (2003).
http://dx.doi.org/10.1021/la026853h
26.
26. G. Raffaini and F. Ganazzoli, Langmuir 26, 5679 (2010).
http://dx.doi.org/10.1021/la903769c
27.
27. V. P. Raut, M. A. Agashe, S. J. Stuart, and R. A. Latour, Langmuir 22, 2402 (2006).
http://dx.doi.org/10.1021/la053501c
28.
28. Y. Sun, W. J. Welsh, and R. A. Latour, Langmuir 21, 5616 (2005).
http://dx.doi.org/10.1021/la046932o
29.
29. F. Wang, S. J. Stuart, and R. A. Latour, BioInterphases 3, 9 (2008).
http://dx.doi.org/10.1116/1.2840054
30.
30. Y. Xie, J. Zhou, and S. Jiang, J. Chem. Phys. 132, 065101 (2010).
http://dx.doi.org/10.1063/1.3305244
31.
31. L. Zhang and Y. Sun, Biochem. Eng. J. 48, 408 (2010).
http://dx.doi.org/10.1016/j.bej.2009.12.003
32.
32. G. Collier, N. A. Vellore, R. A. Latour, and S. J. Stuart, BioInterphases 4, 57 (2009).
http://dx.doi.org/10.1116/1.3266417
33.
33. N. A. Vellore, J. A. Yancey, G. Collier, R. A. Latour, and S. J. Stuart, Langmuir 26, 7396 (2010).
http://dx.doi.org/10.1021/la904415d
34.
34. T. A. Knotts IV, N. Rathore, and J. J. de Pablo, Proteins 61, 385 (2005).
http://dx.doi.org/10.1002/prot.20581
35.
35. M. Friedel, A. Baumketner, and J. Shea, Proc. Natl. Acad. Sci. U.S.A. 103, 8396 (2006).
http://dx.doi.org/10.1073/pnas.0601210103
36.
36. M. Friedel, A. Baumketner, and J.-E. Shea, J. Chem. Phys. 126, 095101 (2007).
http://dx.doi.org/10.1063/1.2464114
37.
37. T. A. Knotts IV, N. Rathore, and J. J. de Pablo, Biophys. J. 94, 4473 (2008).
http://dx.doi.org/10.1529/biophysj.107.123158
38.
38. Z. Zhuang, A. I. Jewett, P. Soto, and J.-E. Shea, Phys. Biol. 6, 015004 (2009).
http://dx.doi.org/10.1088/1478-3975/6/1/015004
39.
39. S. Wei and T. A. Knotts IV, J. Chem. Phys. 133, 115102 (2010).
http://dx.doi.org/10.1063/1.3479039
40.
40. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, Nucleic Acids Res. 22, 235 (2000).
http://dx.doi.org/10.1093/nar/28.1.235
41.
41. A. L. Cuff, I. Sillitoe, T. Lewis, O. C. Redfern, R. Garratt, J. Thornton, and C. A. Orengo, Nucleic Acids Res. 37, D310 (2009).
http://dx.doi.org/10.1093/nar/gkn877
42.
42. C. Orengo, A. Michie, D. Jones, M. Swindells, and J. Thornton, Structure (London) 5, 1093 (1997).
http://dx.doi.org/10.1016/S0969-2126(97)00260-8
43.
43. D. Frishman and P. Argos, Proteins 23, 566 (1995).
http://dx.doi.org/10.1002/prot.340230412
44.
44. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
45.
45. C. Tanford, K. C. Aune, and A. Ikai, J. Mol. Biol. 73, 185 (1973).
http://dx.doi.org/10.1016/0022-2836(73)90322-7
46.
46. K. Kuwajima, Y. Hiraoka, M. Ikeguchi, and S. Sugai, Biochemistry 24, 874 (1985).
http://dx.doi.org/10.1021/bi00325a010
47.
47. A. Chaffotte, Y. Guillou, and M. Goldberg, Biochemistry 31, 9694 (1992).
http://dx.doi.org/10.1021/bi00155a024
48.
48. S. Radford, C. Dobson, and P. Evans, Nature (London) 358, 302 (1992).
http://dx.doi.org/10.1038/358302a0
49.
49. T. Kiefhaber, Proc. Natl. Acad. Sci. U.S.A. 92, 9029 (1995).
http://dx.doi.org/10.1073/pnas.92.1.9
50.
50. M. Parker, J. Spence, and A. Clarke, J. Mol. Biol. 253, 771 (1995).
http://dx.doi.org/10.1006/jmbi.1995.0590
51.
51. G. Wildegger and T. Kiefhaber, J. Mol. Biol. 270, 294 (1997).
http://dx.doi.org/10.1006/jmbi.1997.1030
52.
52. A. Miranker, C. Robinson, S. Randord, R. Aplin, and C. Dobson, Science 262, 896 (1993).
http://dx.doi.org/10.1126/science.8235611
53.
53. J. Karanicolas and C. L. Brooks III, J. Mol. Biol. 334, 309 (2003).
http://dx.doi.org/10.1016/j.jmb.2003.09.047
54.
54. J. Karanicolas and C. L. Brooks III, Proc. Natl. Acad. Sci. U.S.A. 100, 3954 (2003).
http://dx.doi.org/10.1073/pnas.0731771100
55.
55. J. Karanicolas and C. L. Brooks III, Proc. Natl. Acad. Sci. U.S.A. 101, 3432 (2004).
http://dx.doi.org/10.1073/pnas.0304825101
56.
56. R. D. Hills, Jr. and C. L. Brooks III, Int. J. Mol. Sci. 10, 889 (2009).
http://dx.doi.org/10.3390/ijms10030889
57.
57. T. J. Schmitt, J. E. Clark, and T. A. Knotts IV, J. Chem. Phys. 131, 235101 (2009).
http://dx.doi.org/10.1063/1.3270167
58.
58. See http://mmtsb.org/ for Go Model Builder.
59.
59. Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01123-9
60.
60. Y. Sugita, A. Kitao, and Y. Okamoto, J. Chem. Phys. 113, 6042 (2000).
http://dx.doi.org/10.1063/1.1308516
61.
61. S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
62.
62. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
63.
63. S. Nosé, J. Phys.: Condens. Matter 2, SA115 (1990).
http://dx.doi.org/10.1111/j.1525-1594.1990.tb02955.x
64.
64. S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992).
http://dx.doi.org/10.1002/jcc.540130812
65.
65. P. Peluso, D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock, Anal. Biochem. 312, 113 (2003).
http://dx.doi.org/10.1016/S0003-2697(02)00442-6
66.
66. R. Wacker, H. Schroder, and C. Niemeyer, Anal. Biochem. 330, 281 (2004).
http://dx.doi.org/10.1016/j.ab.2004.03.017
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/18/10.1063/1.3589863
Loading
/content/aip/journal/jcp/134/18/10.1063/1.3589863
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/18/10.1063/1.3589863
2011-05-10
2016-09-25

Abstract

Protein/surface interactions are important in a variety of fields and devices, yet fundamental understanding of the relevant phenomena remains fragmented due to resolution limitations of experimental techniques. Molecular simulation has provided useful answers, but such studies have focused on proteins that fold through a two-state process. This study uses simulation to show how surfaces can affect proteins which fold through a multistate process by investigating the folding mechanism of lysozyme (PDB ID: 7LZM). The results demonstrate that in the bulk 7LZM folds through a process with four stable states: the folded state, the unfolded state, and two stable intermediates. The folding mechanism remains the same when the protein is tethered to a surface at most residues; however, in one case the folding mechanism changes in such a way as to eliminate one of the intermediates. An analysis of the molecular configurations shows that tethering at this site is advantageous for protein arrays because the active site is both presented to the bulk phase and stabilized. Taken as a whole, the results offer hope that rational design of protein arrays is possible once the behavior of the protein on the surface is ascertained.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/18/1.3589863.html;jsessionid=Z50EWrbtt1A7a8NYkG_gc3nB.x-aip-live-03?itemId=/content/aip/journal/jcp/134/18/10.1063/1.3589863&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/134/18/10.1063/1.3589863&pageURL=http://scitation.aip.org/content/aip/journal/jcp/134/18/10.1063/1.3589863'
Right1,Right2,Right3,