Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/134/19/10.1063/1.3591179
1.
1. D. M. Neumark, Annu. Rev. Phys. Chem. 43, 153 (1992).
http://dx.doi.org/10.1146/annurev.pc.43.100192.001101
2.
2. D. M. Neumark, Acc. Chem. Res. 26, 33 (1993).
http://dx.doi.org/10.1021/ar00026a001
3.
3. D. E. Manolopoulos, K. Stark, H. J. Werner, D. W. Arnold, S. E. Bradforth, and D. M. Neumark, Science 262, 1852 (1993).
http://dx.doi.org/10.1126/science.262.5141.1852
4.
4. A. Weaver and D. M. Neumark, Faraday Discuss. Chem. Soc. 91, 5 (1991).
http://dx.doi.org/10.1039/dc9919100005
5.
5. D. M. Neumark, Science 272, 1446 (1996).
http://dx.doi.org/10.1126/science.272.5267.1446
6.
6. P. G. Wenthold, D. A. Hrovat, W. T. Borden, and W. C. Lineberger, Science 272, 1456 (1996).
http://dx.doi.org/10.1126/science.272.5267.1456
7.
7. E. Garand, J. Zhou, D. E. Manolopoulos, M. H. Alexander, and D. M. Neumark, Science 319, 72 (2008).
http://dx.doi.org/10.1126/science.1150602
8.
8. A. Weaver, R. B. Metz, S. E. Bradforth, and D. M. Neumark, J. Phys. Chem. 92, 5558 (1988).
http://dx.doi.org/10.1021/j100331a004
9.
9. R. B. Metz, T. Kitsopoulos, A. Weaver, and D. M. Neumark, J. Chem. Phys. 88, 1463 (1988).
http://dx.doi.org/10.1063/1.454218
10.
10. R. B. Metz, A. Weaver, S. E. Bradforth, T. N. Kitsopoulos, and D. M. Neumark, J. Phys. Chem. 94, 1377 (1990).
http://dx.doi.org/10.1021/j100367a034
11.
11. R. B. Metz, and D. M. Neumark, J. Chem. Phys. 97, 962 (1992).
http://dx.doi.org/10.1063/1.463199
12.
12. D. M. Neumark, J. Phys. Chem. A 112, 13287 (2008).
http://dx.doi.org/10.1021/jp807182q
13.
13. D. M. Neumark, personal communications, 2007 and 2011.
14.
14. J. J. Lin, J. G. Zhou, W. C. Shiu, and K. P. Liu, Science 300, 966 (2003).
http://dx.doi.org/10.1126/science.1083672
15.
15. W. Q. Zhang, H. Kawamata, and K. P. Liu, Science 325, 303 (2009).
http://dx.doi.org/10.1126/science.1175018
16.
16. W. Shiu, J. J. Lin, and K. P. Liu, Phys. Rev. Lett. 92, 103201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.103201
17.
17. B. Zhang and K. Liu, J. Chem. Phys. 122, 101102 (2005).
http://dx.doi.org/10.1063/1.1871894
18.
18. G. Czakó, Q. Shuai, K. Liu, and J. M. Bowman, J. Chem. Phys. 133, 131101 (2010).
http://dx.doi.org/10.1063/1.3490795
19.
19. F. Wang, J.-S. Lin, and K. Liu, Science 331, 900 (2011).
http://dx.doi.org/10.1126/science.1199771
20.
20. J. J. Novoa, M. H. Whangbo, and J. M. Williams, Chem. Phys. Lett. 180, 241 (1991).
http://dx.doi.org/10.1016/0009-2614(91)87147-4
21.
21. D. A. Wild, Z. M. Loh, and E. J. Bieske, Int. J. Mass. Spectrom. 220, 273 (2002).
http://dx.doi.org/10.1016/S1387-3806(02)00771-6
22.
22. Z. M. Loh, R. L. Wilson, D. A. Wild, E. J. Bieske, J. M. Lisy, B. Njegic, and M. S. Gordon, J. Phys. Chem. A 110, 13736 (2006).
http://dx.doi.org/10.1021/jp0654112
23.
23. D. A. Wild, Z. M. Loh, P. P. Wolynec, P. S. Weiser, and E. J. Bieske, Chem. Phys. Lett. 332, 531 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01314-2
24.
24. Z. M. Loh, R. L. Wilson, D. A. Wild, E. J. Bieske, and M. S. Gordon, Aust. J. Chem. 57, 1157 (2004).
http://dx.doi.org/10.1071/CH04149
25.
25. G. Czakó, B. J. Braams, and J. M. Bowman, J. Phys. Chem. A 112, 7466 (2008).
http://dx.doi.org/10.1021/jp803318a
26.
26. G. Czakó, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 084301 (2009).
http://dx.doi.org/10.1063/1.3068528
27.
27. G. Czakó and J. M. Bowman, J. Am. Chem. Soc. 131, 17534 (2009).
http://dx.doi.org/10.1021/ja906886z
28.
28. K. Hiraoka, T. Mizuno, T. Iino, D. Eguchi, and S. Yamabe, J. Phys. Chem. A 105, 4887 (2001).
http://dx.doi.org/10.1021/jp010143n
29.
29. H.-G. Xu, Z.-G. Zhang, Y. Feng, J. Y. Yuan, Y. C. Zhao, and W. J. Zheng, Chem. Phys. Lett. 487, 204 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.01.050
30.
30. MOLPRO, a package of ab initio programs designed by H.-J. Werner and P. J. Knowles, version 2008.1, R. D. Amos, A. Bernhardsson, A. Berning et al., see http://www.molpro.net.
31.
31. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
32.
32. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
http://dx.doi.org/10.1063/1.455556
33.
33. P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).
http://dx.doi.org/10.1016/0009-2614(88)87412-8
34.
34. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
35.
35. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
36.
36.See supplementary material at http://dx.doi.org/10.1063/1.3591179 for further computational details. [Supplementary Material]
37.
37. C. Blondel, C. Delsart, and F. Goldfarb, J. Phys. B 34, L281 (2001).
http://dx.doi.org/10.1088/0953-4075/34/9/101
38.
38. U. Berzinsh, M. Gustafsson, D. Hanstorp, A. E. Klinkmueller, U. Ljungblad, and A.-M. Marrtensson-Pendrill, Phys. Rev. A 51, 231 (1995).
http://dx.doi.org/10.1103/PhysRevA.51.231
39.
39. C. Blondel, P. Cacciani, C. Delsart, and R. Trainham, Phys. Rev. A 40, 3698 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.3698
40.
40. D. Hanstorp and M. Gustafsson, J. Phys. B 25, 1773 (1992).
http://dx.doi.org/10.1088/0953-4075/25/8/012
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/19/10.1063/1.3591179
Loading
/content/aip/journal/jcp/134/19/10.1063/1.3591179
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/19/10.1063/1.3591179
2011-05-20
2016-12-07

Abstract

The entrance channel potentials of the prototypical polyatomic reaction family X + CH4 → HX + CH3 (X = F, Cl, Br, I) are investigated using anion photoelectron spectroscopy and high-level ab initioelectronic structure computations. The pre-reactive van der Waals (vdW) wells of these reactions are probed for X = Cl, Br, I by photodetachmentspectra of the corresponding X–CH4 anion complex. For F–CH4, a spin-orbit splitting (∼1310 cm−1) much larger than that of the F atom (404 cm−1) was observed, in good agreement with theory. This showed that in the case of the F–CH4 system the vertical transition from the anion ground state to the neutral potentials accesses a region between the vdW valley and transition state of the early-barrier F + CH4reaction. The doublet splittings observed in the other halogen complexes are close to the isolated atomic spin-orbit splittings, also in agreement with theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/19/1.3591179.html;jsessionid=q3jEN9Lyr8T0ImFpzmbYKToF.x-aip-live-02?itemId=/content/aip/journal/jcp/134/19/10.1063/1.3591179&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/134/19/10.1063/1.3591179&pageURL=http://scitation.aip.org/content/aip/journal/jcp/134/19/10.1063/1.3591179'
Right1,Right2,Right3,