Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Karmaker and A. Samanta, J. Phys. Chem. A 106, 6670 (2002).
2. H. Jin, G. A. Baker, S. Arzhantsev, J. Dong, and M. Maroncelli, J. Chem. Phys. B 111, 7291 (2007).
3. H. Weingartner, P. Sasisanker, C. Daguenet, P. J. Dyson, I. Krossing, J. M. Slattery, and T. Schubert, J. Phys. Chem. B. 111, 4775 (2007).
4. M. Fukuda, M. Terazima, and Y. Kimura J. Chem. Phys. 128, 114508 (2008).
5. Ionic Liquids in Synthesis I, edited by P. Wassercheid and T. Welton (Wiley VCH, Weinheim, 2007).
6. J. L. Barrat and M. L. Klein, J. Chem. Phys. 92, 1294 (1990).
7. J. L. Barrat and M. L. Klein, Annu. Rev. Phys. Chem. 42, 23 (1991).
8. M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
9. J. S. Langer and S. Mulkhopadhyay, Phys. Rev. E 77, 061505 (2008).
10. K. L. Ngai, Comments Solid State Phys. 9, 121 (1979)
11. J. V. Heffernan, J. Budzien, F. Avila, T. C. Dotson, V. J. Aston, J. D. McCoy, and D. B. Adolf J. Chem. Phys. 127, 214902 (2007).
12. B. Szigeti, Trans. Faraday Soc. 45, 155 (1949);
12.B. Szigeti, Proc. Roy. Soc. Lond. A 204, 51 (1950);
12.B. Szigeti, Proc. Roy. Soc. Lond. A 252, 217 (1959);
12.B. Szigeti, Proc. Roy. Soc. Lond. A 261, 274 (1961).
13. B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).
14. W. Cochran, Philos. Mag. 4, 1082 (1959).
15. J. P. Hansen and M. L. Klein, J. Phys. Lett. 35, L29 (1974).
16. G. Jacucci, I. R. McDonald, and A. Rahman, Phys. Rev. A 13, 15811592 (1976).
17. M. Sprik and M. L. Klein, J. Chem. Phys. 89, 7556 (1988).
18. J. C. Shelley, M. Sprik, and M. L. Klein, Langmuir 9, 916 (1993).
19. J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, Jr., M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, J. Phys. Chem. B 114, 2549 (2010).
20. M. Del Popolo, R. Lynden-Bell, and J. Kohanoff, J. Phys. Chem. B 109, 5895 (2005).
21. B. L. Bhargava and S. Balasubramanian, Chem Phys. Lett. 417, 486 (2006).
22. D. Roy and M. Maroncelli, J. Phys. Chem. B 114, 12629 (2010).
23. J. Schmidt, C. Krekeler, F. Dommert, Y. Zhao, R. Berger, L. Delle Site, and C. Holm, J. Phys. Chem. B 114, 6150 (2010).
24. J. N. C. Lopes, J. Deschamps, and A. A. H. Padua, J. Phys. Chem. B 108, 2038 (2004);
24.J. N. C. Lopes, J. Deschamps, and A. A. H. Padua, J. Phys. Chem. B 108, 11250 (2004).
25. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Revision E.01, Gaussian, Inc., Wallingford, CT, 2004.
26. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
27. J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, and R. D. Rogers, Green. Chem. 3, 156 (2001).
28. Y. Shim, D. Jeong, M. Y. Choi, and H. J. Kim, J. Chem. Phys. 125, 061102 (2006).
29. J. Habasaki and K. L. Ngai J. Chem. Phys. 129, 194501 (2008).
30. S. Tsuzuki, W. Shinoda, H. Saito, M. Mikami, H. Tokuda, and M. Watanabe, J. Phys. Chem. B 113, 10641 (2009).
31. A. Bagno, F. D’amico, and G. Saielli, J. Mol. Liq. 131, 17 (2007).
32. J. Picalek and J. Kolafa, J. Mol. Liq. 134, 29 (2007).
33. T. Yan, C. J. Burnam, M. G. Del Popolo, and G. A. Voth, J. Phys. Chem. B 108, 11877 (2004).
34. O. Borodin, J. Phys. Chem. B 113, 11463 (2009).
35. J. Habasaki and I. Okada, Mol. Simul. 9, 319 (1992).
36. T. G. A. Youngs and C. Hardacre, Chem. Phys. Chem. 9, 1548 (2008).
37. In the IL1 model developed by Lopes et al. atoms, which are chemically equivalent when the asymmetry of the side chains is neglected, are forced to have equal partial charges for easy transferability and for the sake of the OPLS force field convention. In the IL0 model, however, we used the partial charges obtained from ab initio charge fitting at 0 K. Thus, chemically equivalent protons can have slightly different partial charges.

Data & Media loading...


Article metrics loading...



The rotational time correlation function (RTCF) of solute benzene molecules in the ionic liquid (1-butyl-3-methylimidazolium chloride) has been studied using classical molecular dynamics simulation. The effect of solvent charge on the functional form of RTCF was investigated by comparing four force fields for the solvent where the total charge on the anion and the cation was set to ±1e, ±0.7e, ±0.5e, and 0, respectively. For all three charged solventmodels, the RTCF exhibits a long-time tail where the relaxation rate exhibits a significant slowdown. This feature is strengthened by higher solvent charges as well as lower temperatures, indicating the influence of the strong Coulombic fields arising from the solvent charges. The long-time tail is caused by the extraordinarily slow solvent structural relaxation of ionic liquids compared to the time scale of their local vibrational and librational dynamics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd