1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Exploring the reorientation of benzene in an ionic liquid via molecular dynamics: Effect of temperature and solvent effective charge on the slow dynamics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/134/19/10.1063/1.3592530
1.
1. R. Karmaker and A. Samanta, J. Phys. Chem. A 106, 6670 (2002).
http://dx.doi.org/10.1021/jp0143591
2.
2. H. Jin, G. A. Baker, S. Arzhantsev, J. Dong, and M. Maroncelli, J. Chem. Phys. B 111, 7291 (2007).
http://dx.doi.org/10.1021/jp070923h
3.
3. H. Weingartner, P. Sasisanker, C. Daguenet, P. J. Dyson, I. Krossing, J. M. Slattery, and T. Schubert, J. Phys. Chem. B. 111, 4775 (2007).
http://dx.doi.org/10.1021/jp0671188
4.
4. M. Fukuda, M. Terazima, and Y. Kimura J. Chem. Phys. 128, 114508 (2008).
http://dx.doi.org/10.1063/1.2841076
5.
5. Ionic Liquids in Synthesis I, edited by P. Wassercheid and T. Welton (Wiley VCH, Weinheim, 2007).
6.
6. J. L. Barrat and M. L. Klein, J. Chem. Phys. 92, 1294 (1990).
http://dx.doi.org/10.1063/1.458139
7.
7. J. L. Barrat and M. L. Klein, Annu. Rev. Phys. Chem. 42, 23 (1991).
http://dx.doi.org/10.1146/annurev.pc.42.100191.000323
8.
8. M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
http://dx.doi.org/10.1021/jp953538d
9.
9. J. S. Langer and S. Mulkhopadhyay, Phys. Rev. E 77, 061505 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.061505
10.
10. K. L. Ngai, Comments Solid State Phys. 9, 121 (1979)
11.
11. J. V. Heffernan, J. Budzien, F. Avila, T. C. Dotson, V. J. Aston, J. D. McCoy, and D. B. Adolf J. Chem. Phys. 127, 214902 (2007).
http://dx.doi.org/10.1063/1.2798755
12.
12. B. Szigeti, Trans. Faraday Soc. 45, 155 (1949);
http://dx.doi.org/10.1039/tf9494500155
12.B. Szigeti, Proc. Roy. Soc. Lond. A 204, 51 (1950);
http://dx.doi.org/10.1098/rspa.1950.0161
12.B. Szigeti, Proc. Roy. Soc. Lond. A 252, 217 (1959);
http://dx.doi.org/10.1098/rspa.1959.0148
12.B. Szigeti, Proc. Roy. Soc. Lond. A 261, 274 (1961).
http://dx.doi.org/10.1098/rspa.1961.0077
13.
13. B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).
http://dx.doi.org/10.1103/PhysRev.112.90
14.
14. W. Cochran, Philos. Mag. 4, 1082 (1959).
http://dx.doi.org/10.1080/14786435908238288
15.
15. J. P. Hansen and M. L. Klein, J. Phys. Lett. 35, L29 (1974).
http://dx.doi.org/10.1051/jphyslet:0197400350302900
16.
16. G. Jacucci, I. R. McDonald, and A. Rahman, Phys. Rev. A 13, 15811592 (1976).
http://dx.doi.org/10.1103/PhysRevA.13.1581
17.
17. M. Sprik and M. L. Klein, J. Chem. Phys. 89, 7556 (1988).
http://dx.doi.org/10.1063/1.455722
18.
18. J. C. Shelley, M. Sprik, and M. L. Klein, Langmuir 9, 916 (1993).
http://dx.doi.org/10.1021/la00028a008
19.
19. J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, Jr., M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, J. Phys. Chem. B 114, 2549 (2010).
http://dx.doi.org/10.1021/jp910674d
20.
20. M. Del Popolo, R. Lynden-Bell, and J. Kohanoff, J. Phys. Chem. B 109, 5895 (2005).
http://dx.doi.org/10.1021/jp044414g
21.
21. B. L. Bhargava and S. Balasubramanian, Chem Phys. Lett. 417, 486 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.10.050
22.
22. D. Roy and M. Maroncelli, J. Phys. Chem. B 114, 12629 (2010).
http://dx.doi.org/10.1021/jp108179n
23.
23. J. Schmidt, C. Krekeler, F. Dommert, Y. Zhao, R. Berger, L. Delle Site, and C. Holm, J. Phys. Chem. B 114, 6150 (2010).
http://dx.doi.org/10.1021/jp910771q
24.
24. J. N. C. Lopes, J. Deschamps, and A. A. H. Padua, J. Phys. Chem. B 108, 2038 (2004);
http://dx.doi.org/10.1021/jp0362133
24.J. N. C. Lopes, J. Deschamps, and A. A. H. Padua, J. Phys. Chem. B 108, 11250 (2004).
http://dx.doi.org/10.1021/jp0476996
25.
25. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, Revision E.01, Gaussian, Inc., Wallingford, CT, 2004.
26.
26. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
http://dx.doi.org/10.1021/ct700301q
27.
27. J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, and R. D. Rogers, Green. Chem. 3, 156 (2001).
http://dx.doi.org/10.1039/b103275p
28.
28. Y. Shim, D. Jeong, M. Y. Choi, and H. J. Kim, J. Chem. Phys. 125, 061102 (2006).
http://dx.doi.org/10.1063/1.2232303
29.
29. J. Habasaki and K. L. Ngai J. Chem. Phys. 129, 194501 (2008).
http://dx.doi.org/10.1063/1.3005372
30.
30. S. Tsuzuki, W. Shinoda, H. Saito, M. Mikami, H. Tokuda, and M. Watanabe, J. Phys. Chem. B 113, 10641 (2009).
http://dx.doi.org/10.1021/jp811128b
31.
31. A. Bagno, F. D’amico, and G. Saielli, J. Mol. Liq. 131, 17 (2007).
http://dx.doi.org/10.1016/j.molliq.2006.08.023
32.
32. J. Picalek and J. Kolafa, J. Mol. Liq. 134, 29 (2007).
http://dx.doi.org/10.1016/j.molliq.2006.12.015
33.
33. T. Yan, C. J. Burnam, M. G. Del Popolo, and G. A. Voth, J. Phys. Chem. B 108, 11877 (2004).
http://dx.doi.org/10.1021/jp047619y
34.
34. O. Borodin, J. Phys. Chem. B 113, 11463 (2009).
http://dx.doi.org/10.1021/jp905220k
35.
35. J. Habasaki and I. Okada, Mol. Simul. 9, 319 (1992).
http://dx.doi.org/10.1080/08927029208049124
36.
36. T. G. A. Youngs and C. Hardacre, Chem. Phys. Chem. 9, 1548 (2008).
http://dx.doi.org/10.1002/cphc.200800200
37.
37. In the IL1 model developed by Lopes et al. atoms, which are chemically equivalent when the asymmetry of the side chains is neglected, are forced to have equal partial charges for easy transferability and for the sake of the OPLS force field convention. In the IL0 model, however, we used the partial charges obtained from ab initio charge fitting at 0 K. Thus, chemically equivalent protons can have slightly different partial charges.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/19/10.1063/1.3592530
Loading
/content/aip/journal/jcp/134/19/10.1063/1.3592530
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/19/10.1063/1.3592530
2011-05-18
2014-11-26

Abstract

The rotational time correlation function (RTCF) of solute benzene molecules in the ionic liquid (1-butyl-3-methylimidazolium chloride) has been studied using classical molecular dynamics simulation. The effect of solvent charge on the functional form of RTCF was investigated by comparing four force fields for the solvent where the total charge on the anion and the cation was set to ±1e, ±0.7e, ±0.5e, and 0, respectively. For all three charged solventmodels, the RTCF exhibits a long-time tail where the relaxation rate exhibits a significant slowdown. This feature is strengthened by higher solvent charges as well as lower temperatures, indicating the influence of the strong Coulombic fields arising from the solvent charges. The long-time tail is caused by the extraordinarily slow solvent structural relaxation of ionic liquids compared to the time scale of their local vibrational and librational dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/19/1.3592530.html;jsessionid=1gm5m7gyncg9q.x-aip-live-03?itemId=/content/aip/journal/jcp/134/19/10.1063/1.3592530&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Exploring the reorientation of benzene in an ionic liquid via molecular dynamics: Effect of temperature and solvent effective charge on the slow dynamics
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/19/10.1063/1.3592530
10.1063/1.3592530
SEARCH_EXPAND_ITEM