Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/134/23/10.1063/1.3603453
1.
1. K. Stark and H.-J. Werner, J. Chem. Phys. 104, 6515 (1996).
http://dx.doi.org/10.1063/1.471372
2.
2. G. Li, H.-J. Werner, F. Lique, and M. H. Alexander, J. Chem. Phys. 127, 174302 (2007).
http://dx.doi.org/10.1063/1.2778421
3.
3. D. E. Manolopoulos, J. Chem. Soc. Faraday Trans. 93, 673 (1997).
http://dx.doi.org/10.1039/a606090k
4.
4. B. Hartke and H.-J. Werner, Chem. Phys. Lett. 280, 430 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)01209-8
5.
5. S. D. Chao and R. T. Skodje, J. Chem. Phys. 113, 3487 (2000).
http://dx.doi.org/10.1063/1.1289526
6.
6. N. Balakrishnan and A. Dalgarno, Chem. Phys. Lett. 341, 652 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00515-2
7.
7. C. Zhu, R. Krems, A. Dalgarno, and N. Balakrishnan, Astrophys. J. 577, 795 (2002).
http://dx.doi.org/10.1086/342240
8.
8. E. Bodo, F. A. Gianturco, and A. Dalgarno, J. Phys. B. 35, 2391 (2002).
http://dx.doi.org/10.1088/0953-4075/35/10/316
9.
9. V. Aquilanti, S. Cavalli, D. De Fazio, A. Volpi, A. Aguilar, X. Giménez, and J. M. Lucas, Chem. Phys. Lett. 371, 504 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00311-7
10.
10. S. C. Althorpe and D. C. Clary, Annu. Rev. Phys. Chem. 54, 493 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103750
11.
11. M. H. Alexander, D. E. Manolopoulos, and H. J. Werner, J. Chem. Phys. 113, 11084 (2000).
http://dx.doi.org/10.1063/1.1326850
12.
12. Y. R. Tzeng and M. H. Alexander, J. Chem. Phys. 121, 5812 (2004).
http://dx.doi.org/10.1063/1.1784446
13.
13. J. Aldegunde, J. M. Alvarino, M. P. de Miranda, V. S. Rabanos, and F. J. Aoiz, J. Chem. Phys. 125 133104 (2006).
http://dx.doi.org/10.1063/1.2212418
14.
14. M. H. Qiu, Z. F. Ren, L. Che, D. X. Dai, S. A. Harich, X. Y. Wang, X. M. Yang, C. X. Xu, D. Q. Xie, M. Gustafsson, R. T. Skodje, Z. G. Sun, and D. H. Zhang, Science 311, 1440 (2006).
http://dx.doi.org/10.1126/science.1123452
15.
15. L. Che, Z. Ren, X. Wang, W. Dong, D. Dai, X. Wang, D. H. Zhang, X. Yang, G. Li, H.-J. Werner, F. Lique, and M. H. Alexander, Science 317, 1061 (2007).
http://dx.doi.org/10.1126/science.1144984
16.
16. F. Lique, M. H. Alexander, G. L. Li, H. J. Werner, S. A. Nizkorodov, W. W. Harper, and D. J. Nesbitt, J. Chem. Phys. 128, 084313 (2008).
http://dx.doi.org/10.1063/1.2831412
17.
17. S. A. Nizkorodov, W. W. Harper, and D. J. Nesbitt, Faraday Discuss. Chem. Soc. 113, 107 (1999).
http://dx.doi.org/10.1039/a901824g
18.
18. P. Soldán, M. T. Cvitas, J. M. Hutson, P. Honvault, and J. M. Launay, Phys. Rev. Lett. 89, 153201 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.153201
19.
19. P. Staanum, S. D. Kraft, J. Lange, R. Wester, and M. Weidemuller, Phys. Rev. Lett. 96, 023201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.023201
20.
20. P. F. Weck and N. Balakrishnan, J. Phys. B 39, S1215 (2006).
http://dx.doi.org/10.1088/0953-4075/39/19/S28
21.
21. H.-J. Werner, M. Kallay, and J. Gauss, J. Chem. Phys. 128, 034305 (2007).
http://dx.doi.org/10.1063/1.2822905
22.
22. D. Skouteris, J. F. Castillo, and D. E. Manolopoulos, Comput. Phys. Commun. 133, 128 (2000).
http://dx.doi.org/10.1016/S0010-4655(00)00167-3
23.
23. J. F. Castillo, D. E. Manolopoulos, K. Stark, and H.-J. Werner, J. Chem. Phys. 104, 6531 (1996).
http://dx.doi.org/10.1063/1.471373
24.
24. R. T. Skodje, D. Skouteris, D. E. Manolopoulos, S. H. Lee, F. Dong, and K. P. Liu, Phys. Rev. Lett. 85, 1206 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1206
25.
25. L. Tao and M. H. Alexander, J. Chem. Phys. 127, 114301 (2007).
http://dx.doi.org/10.1063/1.2766716
26.
26. D. J. Kouri, in Atom-Molecule Collision Theory: A Guide for the Experimentalist, edited by R. B. Bernstein (Plenum, New York, 1979), p. 301.
27.
27. J. F. Castillo and D. E. Manolopoulos, Faraday Discuss. Chem. Soc. 110, 119 (1998).
http://dx.doi.org/10.1039/a801227j
28.
28. C. X. Xu, D. Q. Xie, and D. H. Zhang, Chin. J. Chem. Phys. 19, 96 (2006).
http://dx.doi.org/10.1360/cjcp2006.19(2).96.3
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/23/10.1063/1.3603453
Loading
/content/aip/journal/jcp/134/23/10.1063/1.3603453
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/23/10.1063/1.3603453
2011-06-16
2016-09-30

Abstract

Quantum reactive scattering calculations on accurate potential energy surfaces predict that at energies below ∼5 meV, the reaction of F atoms with H2 is dominated by the Born-Oppenheimer (BO) forbidden reaction of the spin-orbit excited F(2 P 1/2) atom. This non-BO dominance is amplified by low-energy resonances corresponding to quasi-bound states of the HF(v = 3, j = 3) + H product channel. Neglect of non-adiabatic coupling between the electronic states of the F atom leads to a qualitatively incorrect picture of the reaction dynamics at low energy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/23/1.3603453.html;jsessionid=5IHGmXAltAPomWAUs8ekflub.x-aip-live-02?itemId=/content/aip/journal/jcp/134/23/10.1063/1.3603453&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/134/23/10.1063/1.3603453&pageURL=http://scitation.aip.org/content/aip/journal/jcp/134/23/10.1063/1.3603453'
Right1,Right2,Right3,