1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: State-to-state differential cross sections for H2O() photodissociation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/134/23/10.1063/1.3604567
1.
1. K. Liu, Annu. Rev. Phys. Chem. 52, 139 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.139
2.
2. X. Yang, Int. Rev. Phys. Chem. 24, 37 (2005).
http://dx.doi.org/10.1080/01442350500163806
3.
3. R. N. Zare and D. R. Hershbach, Proc. IEEE 51, 173 (1963).
http://dx.doi.org/10.1109/PROC.1963.1676
4.
4. K. Yuan, Y. Cheng, L. Cheng, Q. Guo, D. Dai, X. Wang, X. Yang, and R. N. Dixon, Proc. Natl. Acad. Sci. U.S.A. 105, 19148 (2008).
http://dx.doi.org/10.1073/pnas.0807719105
5.
5. Y. Cheng, K. Yuan, L. Cheng, Q. Guo, D. Dai, and X. Yang, J. Chem. Phys. 134, 064301 (2011).
http://dx.doi.org/10.1063/1.3554213
6.
6. R. Mota, R. Parafita, A. Giuliani, M.-J. Hubin-Franskin, J. M. C. Lourenco, G. Garcia, S. V. Hoffmann, M. J. Mason, P. A. Ribeiro, M. Raposo, and P. Limao-Vieira, Chem. Phys. Lett. 416, 152 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.09.073
7.
7. H.-T. Wang, W. S. Felps, and S. P. McGlynn, J. Chem. Phys. 67, 2614 (1977).
http://dx.doi.org/10.1063/1.435173
8.
8. R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, England, 1993).
9.
9. T. Carrington, J. Chem. Phys. 41, 2012 (1964).
http://dx.doi.org/10.1063/1.1726197
10.
10. M. N. R. Ashfold, M. T. Macpherson, and J. P. Simons, Top. Curr. Chem. 86, 3 (1979).
http://dx.doi.org/10.1007/BFb0010359
11.
11. A. Hodgson, J. P. Simons, M. N. R. Ashfold, J. M. Bayley, and R. N. Dixon, Mol. Phys. 54, 351 (1985).
http://dx.doi.org/10.1080/00268978500100281
12.
12. H. J. Krautwald, L. Schnieder, K. H. Welge, and M. N. R. Ashfold, Faraday Discuss. Chem. Soc. 82, 99 (1986).
http://dx.doi.org/10.1039/dc9868200099
13.
13. D. H. Mordaunt, M. N. R. Ashfold, and R. N. Dixon, J. Chem. Phys. 100, 7360 (1994).
http://dx.doi.org/10.1063/1.466880
14.
14. R. N. Dixon, D. W. Hwang, X. F. Yang, S. Harich, J. J. Lin, and X. Yang, Science 285, 1249 (1999).
http://dx.doi.org/10.1126/science.285.5431.1249
15.
15. S. A. Harich, X. F. Yang, D. W. Huang, J. J. Lin, X. Yang, and R. N. Dixon, J. Chem. Phys. 113, 10073 (2000).
http://dx.doi.org/10.1063/1.1322059
16.
16. A. H. Zanganeh, J. H. Fillion, J. Ruiz, M. Castilejo, J. L. Lemarie, N. Shafizadeh, and F. Rostas, J. Chem. Phys. 112, 5660 (2000).
http://dx.doi.org/10.1063/1.481141
17.
17. J. H. Fillion, R. van Harrevelt, J. Ruiz, M. Castillejo, A. H. Zanganeh, J. L. Lemaire, M. C. van Hemert, and F. Rostas, J. Phys. Chem. A 105, 11414 (2001).
http://dx.doi.org/10.1021/jp013032x
18.
18. B.-M. Cheng, C.-Y. Chung, M. Bahou, Y.-P. Lee, L. C. Lee, R. van Harrevelt, and M. C. van Hemert, J. Chem. Phys. 120, 224 (2004).
http://dx.doi.org/10.1063/1.1630304
19.
19. Y. Cheng, L. Cheng, Q. Guo, K. Yuan, D. Dai, and X. Yang, J. Chem. Phys. 134, 104305 (2011).
http://dx.doi.org/10.1063/1.3555589
20.
20. E. Segev and M. Shapiro, J. Chem. Phys. 77, 5604 (1982).
http://dx.doi.org/10.1063/1.443767
21.
21. K. Weide and R. Schinke, J. Chem. Phys. 87, 4627 (1987).
http://dx.doi.org/10.1063/1.452824
22.
22. K. Weide and R. Schinke, J. Chem. Phys. 90, 7150 (1989).
http://dx.doi.org/10.1063/1.456680
23.
23. K. Weide, K. Kuhl, and R. Schinke, J. Chem. Phys. 91, 3999 (1989).
http://dx.doi.org/10.1063/1.456830
24.
24. B. Heumann, K. Kuhl, K. Weide, R. Duren, B. Hess, U. Neier, S. D. Peyerimhoff, and R. Schinke, Chem. Phys. Lett. 166, 385 (1990).
http://dx.doi.org/10.1016/0009-2614(90)85048-H
25.
25. M. von Dirke, B. Heumann, K. Kuhl, T. Schroder, and R. Schinke, J. Chem. Phys. 101, 2051 (1994).
http://dx.doi.org/10.1063/1.467713
26.
26. R. N. Dixon, J. Chem. Phys. 102, 301 (1995).
http://dx.doi.org/10.1063/1.469403
27.
27. R. van Harrevelt and M. C. van Hemert, J. Chem. Phys. 112, 5777 (2000).
http://dx.doi.org/10.1063/1.481153
28.
28. R. van Harrevelt and M. C. van Hemert, Chem. Phys. Lett. 370, 706 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00171-4
29.
29. F. Flouquet and J. A. Horsley, J. Chem. Phys. 60, 3767 (1974).
http://dx.doi.org/10.1063/1.1680817
30.
30. G. Theodorakopoulos, I. D. Petsalakis, and R. J. Buenker, Chem. Phys. 96, 217 (1985).
http://dx.doi.org/10.1016/0301-0104(85)85086-2
31.
31. R. van Harrevelt and M. C. van Hemert, J. Chem. Phys. 112, 5787 (2000).
http://dx.doi.org/10.1063/1.481154
32.
32. A. J. Dobbyn and P. J. Knowles, Mol. Phys. 91, 1107 (1997).
http://dx.doi.org/10.1080/00268979709482798
33.
33. G. G. Balint-Kurti and M. Shapiro, Chem. Phys. 61, 137 (1981).
http://dx.doi.org/10.1016/0301-0104(81)85056-2
34.
34. G. G. Balint-Kurti, Adv. Chem. Phys. 128, 249 (2004).
http://dx.doi.org/10.1002/0471484237
35.
35. A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd ed. (Princeton University Press, Princeton, NJ, 1960).
36.
36. H. Guo, in Theory of Chemical Reaction Dynamics, edited by A. Lagana and G. Lendvay (Kluwer, Dordrecht, 2004), pp. 217229.
37.
37. E. M. Goldfield and S. K. Gray, Adv. Chem. Phys. 136, 1 (2007).
38.
38. G. G. Balint-Kurti, Int. Rev. Phys. Chem. 27, 507 (2008).
http://dx.doi.org/10.1080/01442350802102379
39.
39. J. C. Light and T. Carrington, Jr., Adv. Chem. Phys. 114, 263 (2000).
40.
40. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 103, 2903 (1995).
http://dx.doi.org/10.1063/1.470477
41.
41. D. Xie, H. Guo, Y. Amatatsu, and R. Kosloff, J. Phys. Chem. A 104, 1009 (2000).
http://dx.doi.org/10.1021/jp9932463
42.
42. H. Guo and T. Seideman, Phys. Chem. Chem. Phys. 1, 1265 (1999).
http://dx.doi.org/10.1039/a806792i
43.
43. D. Xu, D. Xie, and H. Guo, J. Chem. Phys. 116, 10626 (2002).
http://dx.doi.org/10.1063/1.1480874
44.
44. G. G. Balint-Kurti, R. N. Dixon, and C. C. Marston, J. Chem. Soc., Faraday Trans. 86, 1741 (1990).
http://dx.doi.org/10.1039/ft9908601741
45.
45. H. Guo, J. Chem. Phys. 108, 2466 (1998).
http://dx.doi.org/10.1063/1.475629
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/23/10.1063/1.3604567
Loading
/content/aip/journal/jcp/134/23/10.1063/1.3604567
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/23/10.1063/1.3604567
2011-06-21
2014-12-27

Abstract

Quantum state-to-state differential cross sections, along with the absorptionspectrum and product internal state distributions, have been calculated for the photodissociation of H2O in its B band on a new set of ab initiopotential energy surfaces in a diabatic representation. The theoretical attributes are in good agreement with the recent experimental data, shedding light on the non-adiabaticdissociation dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/23/1.3604567.html;jsessionid=57ucnoai4qni6.x-aip-live-06?itemId=/content/aip/journal/jcp/134/23/10.1063/1.3604567&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: State-to-state differential cross sections for H2O(B̃) photodissociation
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/23/10.1063/1.3604567
10.1063/1.3604567
SEARCH_EXPAND_ITEM