Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/134/24/10.1063/1.3605659
1.
1.C. N. Likos, Phys. Rep. 348, 267 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00141-1
2.
2.G. Malescio, J. Phys.:Condens. Matter 19, 073101 (2007).
http://dx.doi.org/10.1088/0953-8984/19/7/073101
3.
3.M. Chaudhuri, A. V. Ivlev, S. A. Khrapak, H. M. Thomas, and G. E. Morfill, Soft Matter 7, 1287 (2011).
http://dx.doi.org/10.1039/c0sm00813c
4.
4.V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.007
5.
5.J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, New York, 2006).
6.
6.J.-P. Hansen, Phys. Rev. A 2, 221 (1970).
http://dx.doi.org/10.1103/PhysRevA.2.221
7.
7.W. G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem. Phys. 55, 1128 (1971).
http://dx.doi.org/10.1063/1.1676196
8.
8.R. Agrawal and D. A. Kofke, Phys. Rev. Lett. 74, 122 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.122
9.
9.S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev. E 56, 4671 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.4671
10.
10.S. Prestipino, F. Saija, and P. V. Giaquinta, Phys. Rev. E 71, 050102R (2005).
http://dx.doi.org/10.1103/PhysRevE.71.050102
11.
11.S. A. Khrapak, M. Chaudhuri, and G. E. Morfill, J. Chem. Phys. 134, 054120 (2011).
http://dx.doi.org/10.1063/1.3552948
12.
12.H. Löwen, Phys. Rep. 237, 249 (1994).
http://dx.doi.org/10.1016/0370-1573(94)90017-5
13.
13.F. Saija, S. Prestipino, and P. V. Giaquinta, J. Chem. Phys. 124, 244504 (2006).
http://dx.doi.org/10.1063/1.2208357
14.
14.S. A. Khrapak and G. E. Morfill, Phys. Rev. Lett. 103, 255003 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.255003
15.
15.R. Agrawal and D. A. Kofke, Mol. Phys. 85, 23 (1995).
http://dx.doi.org/10.1080/00268979500100911
16.
16.S. Prestipino, F. Saija, and P. V. Giaquinta, J. Chem Phys. 123, 144110 (2005).
http://dx.doi.org/10.1063/1.2064639
17.
17.G. S. Stringfellow, H. E. DeWitt, and W. L. Slattery, Phys. Rev. A 41, 1105 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.1105
18.
18.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schr⊘der, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008).
http://dx.doi.org/10.1063/1.2982249
19.
19.J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
http://dx.doi.org/10.1063/1.1674820
20.
20.F. H. Stillinger, J. Chem. Phys. 65, 3968 (1976).
http://dx.doi.org/10.1063/1.432891
21.
21.C. N. Likos, S. Rosenfeldt, N. Dingenouts, M. Ballauff, P. Lindner, N. Werner, and F. Vögtle, J. Chem. Phys. 117, 1869 (2002).
http://dx.doi.org/10.1063/1.1486209
22.
22.E. J. Meijer and D. Frenkel, J. Chem. Phys. 94, 2269 (1991).
http://dx.doi.org/10.1063/1.459898
23.
23.M. J. Stevens and M. O. Robbins, J. Chem. Phys. 98, 2319 (1993).
http://dx.doi.org/10.1063/1.464213
24.
24.J. P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969).
http://dx.doi.org/10.1103/PhysRev.184.151
25.
25.R. Agrawal and D. A. Kofke, Mol. Phys. 85, 43 (1995).
http://dx.doi.org/10.1080/00268979500100921
26.
26.M. A. Barroso and A. L. Ferreira, J. Chem. Phys. 116, 7145 (2002).
http://dx.doi.org/10.1063/1.1464828
27.
27.A. Ahmed and R. J. Sadus, J. Chem. Phys. 131, 174504 (2009).
http://dx.doi.org/10.1063/1.3253686
28.
28.F. Saija and S. Prestipino, Phys. Rev. B 72, 024113 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024113
29.
29.A. de Kuijper, J. A. Schouten, and J. P. J. Michels, J. Chem. Phys. 93, 3515 (1990).
http://dx.doi.org/10.1063/1.458833
30.
30.P. Mausbach, A. Ahmed, and R. Sadus, J. Chem. Phys. 131, 184507 (2009).
http://dx.doi.org/10.1063/1.3256004
31.
31.A. Lang, C. N. Likos, M. Watzlawek, and H. Löwen, J. Phys.: Condens. Matter 12, 5087 (2000).
http://dx.doi.org/10.1088/0953-8984/12/24/302
32.
32.The melting data for the exp − 6 potential (from Ref. 28) displayed in Fig. 3 correspond to densities much lower than those expected near the re-entrant melting anomaly.
33.
33.S. A. Khrapak and G. E. Morfill, J. Chem. Phys. 134, 094108 (2011).
http://dx.doi.org/10.1063/1.3561698
34.
34.N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009).
http://dx.doi.org/10.1063/1.3265957
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/24/10.1063/1.3605659
Loading
/content/aip/journal/jcp/134/24/10.1063/1.3605659
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/24/10.1063/1.3605659
2011-06-23
2016-09-30

Abstract

We demonstrate that the melting curves of various model systems of interacting particles collapse to (or are located very close to) a universal master curve on a plane of appropriately chosen scaled variables. The physics behind this universality is discussed. An equation for the emerging “universal melting curve” is proposed. The obtained results can be used to approximately predict melting of various substances in a wide range of conditions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/24/1.3605659.html;jsessionid=Lo3MVJ2GSvC12kRcxyNj-4xA.x-aip-live-03?itemId=/content/aip/journal/jcp/134/24/10.1063/1.3605659&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/134/24/10.1063/1.3605659&pageURL=http://scitation.aip.org/content/aip/journal/jcp/134/24/10.1063/1.3605659'
Right1,Right2,Right3,