Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/134/4/10.1063/1.3547699
1.
1. H. Weller, Angew. Chem., Int. Ed. Engl. 32, 41 (1993).
http://dx.doi.org/10.1002/anie.199300411
2.
2. A. P. Alivisatos, Science 271, 933 (1996).
http://dx.doi.org/10.1126/science.271.5251.933
3.
3. J. M. Antonietti, F. Conus, A. Châtelain, and S. Fedrigo, Phys. Rev. B 68, 035420 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.035420
4.
4. C. L. Pettiette, S. H. Yang, M. J. Craycraft, J. Conceicao, R. T. Laaksonen, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 88, 5377 (1988).
http://dx.doi.org/10.1063/1.454575
5.
5. M. Maus, G. Ganteför, and W. Eberhardt, Appl. Phys. A: Mater. Sci. Process. 70, 535 (2000).
http://dx.doi.org/10.1007/s003390051075
6.
6. O. C. Thomas, W. Zheng, S. Xu, and K. H. Bowen Jr., Phys. Rev. Lett. 89, 213403 (2002).
7.
7. O. Kostko, G. Wrigge, O. Cheshnovsky, and B. v. Issendorff, J. Chem. Phys. 123, 221102 (2005).
http://dx.doi.org/10.1063/1.2138689
8.
8. R. C. Bilodeau, J. D. Bozek, N. D. Gibson, C. W. Walter, G. D. Ackerman, I. Dumitriu, and N. Berrah, Phys. Rev. Lett. 95, 083001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.083001
9.
9. J. T. Lau, J. Rittmann, V. Zamudio-Bayer, M. Vogel, K. Hirsch, P. Klar, F. Lofink, T. Möller, and B. v. Issendorff, Phys. Rev. Lett. 101, 153401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.153401
10.
10. O. Kostko, S. R. Leone, M. A. Duncan, and M. Ahmed, J. Phys. Chem. A 114, 3176 (2010).
http://dx.doi.org/10.1021/jp9091688
11.
11. H. Borchert, D. V. Talapin, C. McGinley, S. Adam, A. Lobo, A. R.B. de Castro, T. Möller, and H. Weller, J. Chem. Phys. 119, 1800 (2003).
http://dx.doi.org/10.1063/1.1580096
12.
12. V. Senz, T. Fischer, P. Oelssner, J. Tiggesbäumker, J. Stanzel, C. Bostedt, H. Thomas, M. Schöffler, L. Foucar, M. Martins, J. Neville, M. Neeb, T. Möller, W. Wurth, E. Rühl, R. Dörner, H. Schmidt-Böcking, W. Eberhardt, G. Ganteför, R. Treusch, P. Radcliffe, and K.-H. Meiwes-Broer, Phys. Rev. Lett. 102, 138303 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.138303
13.
13. S. M. Beck, J. Chem. Phys. 87, 4233 (1987).
http://dx.doi.org/10.1063/1.452877
14.
14. K. Koyasu, M. Akutsu, M. Mitsui, and A. Nakajima, J. Am. Chem. Soc. 127, 4998 (2005).
http://dx.doi.org/10.1021/ja045380t
15.
15. E. Janssens, P. Gruene, G. Meijer, L. Wöste, P. Lievens, and A. Fielicke, Phys. Rev. Lett. 99, 063401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.063401
16.
16. K. Koyasu, J. Atobe, M. Akutsu, M. Mitsui, and A. Nakajima, J. Phys. Chem. A 111, 42 (2007).
http://dx.doi.org/10.1021/jp066757f
17.
17. V. Kumar and Y. Kawazoe, Phys. Rev. Lett. 87, 045503 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.045503
18.
18. V. Kumar, Comput. Mater. Sci. 36, 1 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.06.004
19.
19. J. Ulises Reveles and S. N. Khanna, Phys. Rev. B, 74, 035435 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.035435
20.
20. M. B. Torres, E. M. Fernández, and L. C. Balbás, Phys. Rev. B 75, 205425 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205425
21.
21. J. T. Lau, K. Hirsch, P. Klar, A. Langenberg, F. Lofink, R. Richter, J. Rittmann, M. Vogel, V. Zamudio-Bayer, T. Möller, and B. v. Issendorff, Phys. Rev. A 79, 053201 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.053201
22.
22. K. Hirsch, J. T. Lau, P. Klar, A. Langenberg, J. Probst, J. Rittmann, M. Vogel, V. Zamudio-Bayer, T. Möller, and B. von Issendorff, J. Phys. B 42, 154029 (2009).
http://dx.doi.org/10.1088/0953-4075/42/15/154029
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/4/10.1063/1.3547699
Loading
/content/aip/journal/jcp/134/4/10.1063/1.3547699
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/4/10.1063/1.3547699
2011-01-26
2016-09-27

Abstract

A method to determine band gaps of size-selected and isolated nanoparticles by combination of valence band and core-level photoionizationspectroscopy is presented. This approach is widely applicable and provides a convenient alternative to current standard techniques for the determination of band gaps by optical or photoelectron spectroscopy. A first application to vanadiumdopedsilicon clusters confirms a striking size-dependence of their highest occupied–lowest unoccupied molecular orbital gaps.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/4/1.3547699.html;jsessionid=C3qr61yvl8SV5M2mhN9ZFWW5.x-aip-live-02?itemId=/content/aip/journal/jcp/134/4/10.1063/1.3547699&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/134/4/10.1063/1.3547699&pageURL=http://scitation.aip.org/content/aip/journal/jcp/134/4/10.1063/1.3547699'
Right1,Right2,Right3,