Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. J. Hehre, L. Radom, P. v.R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
2. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934)
3. S. Grimme, J. Chem. Phys. 124, 034108 (2006)
4. S. Saebo and P. Pulay, Annu. Rev. Phys. Chem. 44, 213 (1993)
5. M. Schutz, G. Hetzer, and H. J. Werner, J. Chem. Phys. 111, 5691 (1999)
6. P. Ayala and G. E. Scuseria, J. Chem. Phys. 110, 3660 (1999)
7. P. Ayala, K. Kudin, and G. E. Scuseria, J. Chem. Phys. 115, 9698 (2001)
8. B. Doser, D. Lambrecht, J. Kussmann, and C. Ochsenfeld, J. Chem. Phys. 130, 064107 (2009)
9. M. S. Lee, P. E. Maslen, and M. Head-Gordon, J. Chem. Phys. 112, 3592 (2000)
10. Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon, J. Chem. Phys. 121, 9793 (2004)
11. F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, Chem. Phys. Lett. 294, 143 (1998)
12. M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. 208, 359 (1993)
13. R. A. Friesner, R. B. Murphy, M. D. Beachy, M. N. Ringnalda, W. T. Pollard, B. D. Dunietz, and Y. Cao, J. Phys. Chem. A 103, 1913 (1999)
14. R. Olivares-Amaya, M. A. Watson, R. G. Edgar, L. Vogt, Y. Shao, andA. Aspuru-Guzik, J. Chem. Theory Comput. 6, 135 (2010)
15. M. A. Watson, R. Olivares-Amaya, R. G. Edgar, and A. Aspuru-Guzik, Comput. Sci. Eng. 12(4), 40 (2010)
16. J. Deng, A. T. B. Gilbert, and P. M. W. Gill, J. Chem. Phys. 130, 231101 (2009)
17. J. Deng, A. T. B. Gilbert, and P. M. W. Gill, J. Chem. Phys. 133, 044116 (2010)
18. J. Deng, A. T. B. Gilbert, and P. M. W. Gill, Phys. Chem. Chem. Phys. 12, 10759 (2010)
19. R. Jurgens-Lutovsky and J. Almlöf, Chem. Phys. Lett. 178, 451 (1991)
20. K. Wolinski and P. Pulay, J. Chem. Phys. 118, 9497 (2003)
21. R. P. Steele, R. A. DiStasio Jr., Y. Shao, J. Kong, and M. Head-Gordon, J. Chem. Phys. 125, 074108 (2006)
22. G. G. Hall, Proc. R. Soc. London, Ser. A 205, 541 (1951)
23. C. C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)
24. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989)
25. A. T. B. Gilbert, N. A. Besley, and P. M. W. Gill, J. Phys. Chem. A 112, 13164 (2008)
26. J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, J. Chem. Phys. 90, 5622 (1989)
27.See supplementary material at for raw MP2[x] energies. [Supplementary Material]
28. M. S. Marshall, J. S. Sears, L. A. Burns, J.-L. Bredas, and C. D. Sherrill, J. Chem. Theory Comput. 6, 3681 (2010)
29.We chose this primary basis because the DB-RI-MP2 method stipulates that the primary basis be a subset of the secondary basis. There is no such restriction in the MP2[x] approximations.
30. Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J.O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F.C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006).

Data & Media loading...


Article metrics loading...



We describe a hierarchy of approximations (MP2[x]) that allow one to estimate second-order Møller–Plesset (MP2) energies in a large basis set from small-basis calculations. The most cost-effective approximation, MP2[K], is significantly cheaper than full MP2 but numerical tests on small atoms and molecules indicate that it is nonetheless accurate. We conclude that MP2[K] is an attractive level of theory for large systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd