Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/134/8/10.1063/1.3558787
1.
1. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Oxford, 1987);
1.D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, New York, 2002).
2.
2. B. Smit, J. Chem. Phys. 96, 8639 (1992).
http://dx.doi.org/10.1063/1.462271
3.
3. P. Grosfils and J. F. Lutsko, J. Chem. Phys. 130, 054703 (2009).
http://dx.doi.org/10.1063/1.3072156
4.
4. C. Valeriani, Z. J. Wang, and D. Frenkel, Mol. Simul. 33, 1023 (2007).
http://dx.doi.org/10.1080/08927020701579352
5.
5. A. Ahmed and R. J. Sadus, J. Chem. Phys. 133, 124515 (2010).
http://dx.doi.org/10.1063/1.3481102
6.
6. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971);
http://dx.doi.org/10.1063/1.1674820
6.J. H. R. Clarke, W. Smith, and L. V. Woodcock, J. Chem. Phys. 84, 2290 (1986);
http://dx.doi.org/10.1063/1.450391
6.J. D. Weeks, K. Vollmayr, and K. Katsov, Physica A 244, 461 (1997);
http://dx.doi.org/10.1016/S0378-4371(97)00241-0
6.F. Cuadros, A. Mulero, and C. A. Faundez, Mol. Phys. 98, 899 (2000).
http://dx.doi.org/10.1080/00268970050025510
7.
7. S. D. Stoddard and J. Ford, Phys. Rev. A 8, 1504 (1973);
http://dx.doi.org/10.1103/PhysRevA.8.1504
7.J. J. Nicolas, K. E. Gubbins, W. B. Street, and D. J. Tildesley, Mol. Phys. 37, 1429 (1979);
http://dx.doi.org/10.1080/00268977900101051
7.J. G. Powles, W. A. B. Evans, and N. Quirke, Mol. Phys. 46, 1347 (1982).
8.
8. D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999);
http://dx.doi.org/10.1063/1.478738
8.D. Zahn, B. Schilling, and S. M. Kast, J. Phys. Chem. B 106, 10725 (2002);
http://dx.doi.org/10.1021/jp025949h
8.C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006).
http://dx.doi.org/10.1063/1.2206581
9.
9.For MD details see S. Toxvaerd, Mol. Phys. 72, 159 (1991). The unit length, energy, and time used are, respectively, σ, ε, and .
http://dx.doi.org/10.1080/00268979100100101
10.
10. L. Verlet, Phys. Rev. 159, 98 (1967).
http://dx.doi.org/10.1103/PhysRev.159.98
11.
11. W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1376
12.
12.The radial force fSP(r) was smoothed in the interval rc ± δ by replacing it with the function f(r) = f(rc − δ)h(x) with h(x) = 1 + cx − (3 + 2c)x2 + (2 + c)x3, where x = (rrc + δ)/2δ and c = 2δu″(rc − δ)/u′(rc − δ). This ensures that fSP and fSP go smoothly to zero in the cut interval. In the simulations δ = 0.025 (other values lead to similar conclusions).
13.
13. S. Toxvaerd, Phys. Rev. E 50, 2271 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.2271
14.
14. L. Berthier and G. Tarjus, Phys. Rev. Lett. 103, 170601 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.170601
14.U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 105, 157801 (2010);
http://dx.doi.org/10.1103/PhysRevLett.105.157801
14.Y. S. Elmatad, D. Chandler, and J. P. Garrahan, J. Phys. Chem. B 114, 17113 (2010).
http://dx.doi.org/10.1021/jp1076438
15.
15. N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008);
http://dx.doi.org/10.1063/1.2982249
15.T. B. Schrøder, N. P. Bailey, U. R. Pedersen, N. Gnan, and J. C. Dyre, J. Chem. Phys. 131, 234503 (2009).
http://dx.doi.org/10.1063/1.3265955
16.
16. N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009).
http://dx.doi.org/10.1063/1.3265957
17.
17. J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967).
http://dx.doi.org/10.1063/1.1701689
18.
18. S. Toxvaerd, J. Chem. Phys. 55, 3116 (1971).
http://dx.doi.org/10.1063/1.1676556
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/8/10.1063/1.3558787
Loading
/content/aip/journal/jcp/134/8/10.1063/1.3558787
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/8/10.1063/1.3558787
2011-02-25
2016-12-07

Abstract

Simulations involving the Lennard-Jones potential usually employ a cutoff at r = 2.5σ. This communication investigates the possibility of reducing the cutoff. Two different cutoff implementations are compared, the standard shifted potential cutoff and the less commonly used shifted forces cutoff. The first has correct forces below the cutoff, whereas the shifted forces cutoff modifies Newton's equations at all distances. The latter is nevertheless superior; we find that for most purposes realistic simulations may be obtained using a shifted forces cutoff at r = 1.5σ, even though the pair force is here 30 times larger than at r = 2.5σ.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/8/1.3558787.html;jsessionid=zw-BMdpTVcpFzmeQWASGITiy.x-aip-live-06?itemId=/content/aip/journal/jcp/134/8/10.1063/1.3558787&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/134/8/10.1063/1.3558787&pageURL=http://scitation.aip.org/content/aip/journal/jcp/134/8/10.1063/1.3558787'
Right1,Right2,Right3,