1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Generalizing Rosenfeld's excess-entropy scaling to predict long-time diffusivity in dense fluids of Brownian particles: From hard to ultrasoft interactions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/134/8/10.1063/1.3559676
1.
1. P. N. Pusey and W. van Megen, Nature (London) 320, 340 (1986).
http://dx.doi.org/10.1038/320340a0
2.
2. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science 287, 627 (2000).
http://dx.doi.org/10.1126/science.287.5453.627
3.
3. H. Löwen, in Statistical Physics and Spatial Statistics, edited by K. R. Mecke and D. Stoyan (Springer, Berlin, 2000), Vol. 554 of Lecture Notes in Physics, p. 295.
4.
4. C. N. Likos, Phys. Rep. 348, 267 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00141-1
5.
5. A. A. Louis, P. G. Bolhuis, and J. P. Hansen, Phys. Rev. E 62, 7961 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.7961
6.
6. A. J. Archer and R. Evans, Phys. Rev. E 64, 041501 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.041501
7.
7. F. H. Stillinger, J. Chem. Phys. 65, 3968 (1976).
http://dx.doi.org/10.1063/1.432891
8.
8. M. Watzlawek, C. N. Likos, and H. Löwen, Phys. Rev. Lett. 82, 5289 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.5289
9.
9. A. Lang, C. N. Likos, M. Watzlawek, and H. Lowen, J. Phys.: Condens. Matter 12, 5087 (2000).
http://dx.doi.org/10.1088/0953-8984/12/24/302
10.
10. C. N. Likos, M. Watzlawek, and H. Löwen, Phys. Rev. E 58, 3135 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.3135
11.
11. C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Phys. Rev. E 63, 031206 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.031206
12.
12. S. Prestipino, F. Saija, and P. V. Giaquinta, Phys. Rev. E 71, 050102 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.050102
13.
13. B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. N. Likos, Phys. Rev. Lett. 96, 045701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.045701
14.
14. F. L. Verso, C. N. Likos, and L. Reatto, Prog. Colloid Polym. Sci. 133, 78 (2006).
http://dx.doi.org/10.1007/3-540-32702-9
15.
15. C. E. Zachary, F. H. Stillinger, and S. Torquato, J. Chem. Phys. 128, 224505 (2008).
http://dx.doi.org/10.1063/1.2928843
16.
16. A. J. Moreno and C. N. Likos, Phys. Rev. Lett. 99, 107801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.107801
17.
17. M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. N. Likos, J. Phys. Chem. B 111, 12799 (2007).
http://dx.doi.org/10.1021/jp074652m
18.
18. P. Mausbach and H. O. May, Fluid Phase Equilib. 249, 17 (2006).
http://dx.doi.org/10.1016/j.fluid.2006.07.021
19.
19. F. Saija, S. Prestipino, and P. V. Giaquinta, J. Chem. Phys. 124, 244504 (2006).
http://dx.doi.org/10.1063/1.2208357
20.
20. W. P. Krekelberg, T. Kumar, J. Mittal, J. R. Errington, and T. M. Truskett, Phys. Rev. E 79, 031203 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.031203
21.
21. W. P. Krekelberg, M. J. Pond, G. Goel, V. K. Shen, J. R. Errington, and T. M. Truskett, Phys. Rev. E 80, 061205 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.061205
22.
22. Y. D. Fomin, V. N. Ryzhov, and N. V. Gribova, Phys. Rev. E 81, 061201 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.061201
23.
23. G. Foffi, F. Sciortino, P. Tartaglia, E. Zaccarelli, F. L. Verso, L. Reatto, K. A. Dawson, and C. N. Likos, Phys. Rev. Lett. 90, 238301 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.238301
24.
24. H. Wensink, H. Löwen, M. Rex, C. Likos, and S. van Teeffelen, Comput. Phys. Commun. 179, 77 (2008).
http://dx.doi.org/10.1016/j.cpc.2008.01.009
25.
25. M. J. Pond, W. P. Krekelberg, V. K. Shen, J. R. Errington, and T. M. Truskett, J. Chem. Phys. 131, 161101 (2009).
http://dx.doi.org/10.1063/1.3256235
26.
26. J. C. Pàmies, A. Cacciuto, and D. Frenkel, J. Chem. Phys. 131, 044514 (2009).
http://dx.doi.org/10.1063/1.3186742
27.
27. L. A. Shall and S. A. Egorov, J. Chem. Phys. 132, 184504 (2010).
http://dx.doi.org/10.1063/1.3429354
28.
28. H. Jacquin and L. Berthier, Soft Matter 6, 2970 (2010).
http://dx.doi.org/10.1039/b926412d
29.
29. L. Berthier, A. J. Moreno, and G. Szamel, Phys. Rev. E 82, 060501 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.060501
30.
30. M. Schmidt, J. Phys: Condens. Matter 11, 10163 (1999).
http://dx.doi.org/10.1088/0953-8984/11/50/309
31.
31. C. N. Likos, Soft Matter 2, 478 (2006).
http://dx.doi.org/10.1039/b601916c
32.
32. A. Jusufi and C. N. Likos, Rev. Mod. Phys. 81, 1753 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1753
33.
33. M. Medina-Noyola, Phys. Rev. Lett. 60, 2705 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.2705
34.
34. D. S. Dean and A. Lefèvre, Phys. Rev. E 69, 061111 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.061111
35.
35. L. Berthier, E. Flenner, H. Jacquin, and G. Szamel, Phys. Rev. E 81, 031505 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.031505
36.
36. A. Ikeda and K. Miyazaki, Phys. Rev. Lett. 106, 015701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.015701
37.
37. S.-H. Suh, C.-H. Kim, S.-C. Kim, and A. Santos, Phys. Rev. E 82, 051202 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.051202
38.
38. Y. Rosenfeld, Phys. Rev. A 15, 2545 (1977).
http://dx.doi.org/10.1103/PhysRevA.15.2545
39.
39. Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999).
http://dx.doi.org/10.1088/0953-8984/11/28/303
40.
40. A. Samanta, S. M. Ali, and S. K. Ghosh, J. Chem. Phys. 123, 084505 (2005).
http://dx.doi.org/10.1063/1.2009728
41.
41. D. S. Dean and C. Touya, J. Phys. A: Math. Theor. 41, 335002 (2008).
http://dx.doi.org/10.1088/1751-8113/41/33/335002
42.
42. M. Dzugutov, Nature (London) 381, 137 (1996).
http://dx.doi.org/10.1038/381137a0
43.
43. R. Sharma, S. N. Chakraborty, and C. Chakravarty, J. Chem. Phys. 125, 204501 (2006).
http://dx.doi.org/10.1063/1.2390710
44.
44. J. Mittal, J. R. Errington, and T. M. Truskett, J. Phys. Chem. B 111, 10054 (2007).
http://dx.doi.org/10.1021/jp071369e
45.
45. E. H. Abramson, Phys. Rev. E 76, 051203 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.051203
46.
46. E. H. Abramson and H. West-Foyle, Phys. Rev. E 77, 041202 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.041202
47.
47. E. H. Abramson, Phys. Rev. E 80, 021201 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.021201
48.
48. N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009).
http://dx.doi.org/10.1063/1.3265957
49.
49. G. K. Batchelor, J. Fluid Mech. 74, 1 (1976).
http://dx.doi.org/10.1017/S0022112076001663
50.
50. G. K. Batchelor, J. Fluid Mech. 131, 155 (1983).
http://dx.doi.org/10.1017/S0022112083001275
51.
51. H. N.W. Lekkerkerker and J. Dhont, J. Chem. Phys 80, 5790 (1984).
http://dx.doi.org/10.1063/1.446602
52.
52. J. K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Burlington, 1996).
53.
53. D. Ben-Amotz and G. Stell, J. Phys. Chem. B 108, 6877 (2004).
http://dx.doi.org/10.1021/jp037810s
54.
54. D. L. Ermak, J. Chem. Phys. 62, 4189 (1975).
http://dx.doi.org/10.1063/1.430300
55.
55. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford University Press, New York, 1987).
56.
56. J. R. Errington, J. Chem. Phys. 118, 9915 (2003).
http://dx.doi.org/10.1063/1.1572463
57.
57. A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992).
http://dx.doi.org/10.1063/1.462133
58.
58. E. M. Grzelak and J. R. Errington, Langmuir 26, 1329713304 (2010).
http://dx.doi.org/10.1021/la1016164
59.
59. R. Chopra, T. M. Truskett, and J. R. Errington, J. Phys. Chem. B 114, 10558 (2010).
http://dx.doi.org/10.1021/jp1049155
60.
60. R. Chopra, T. M. Truskett, and J. R. Errington, J. Phys. Chem. B 114, 16487 (2010).
http://dx.doi.org/10.1021/jp107878u
61.
61.In this work, we used the MATLAB function bvp4c to solve eq. (3)
62.
62.The cutoff radius rcut was determined by .
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/8/10.1063/1.3559676
Loading
/content/aip/journal/jcp/134/8/10.1063/1.3559676
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/8/10.1063/1.3559676
2011-02-23
2014-08-22

Abstract

Computer simulations are used to test whether a recently introduced generalization of Rosenfeld's excess-entropy scaling method for estimating transport coefficients in systems obeying molecular dynamics can be extended to predict long-time diffusivities in fluids of particles undergoing Brownian dynamics in the absence of interparticle hydrodynamic forces. Model fluids with inverse-power-law, Gaussian-core, and Hertzian pair interactions are considered. Within the generalized Rosenfeld scaling method, long-time diffusivities of ultrasoft Gaussian-core and Hertzian particle fluids, which display anomalous trends with increasing density, are predicted (to within 20%) based on knowledge of interparticle interactions, excess entropy, and scaling behavior of simpler inverse-power-law fluids.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/8/1.3559676.html;jsessionid=a089mb92dhrsa.x-aip-live-06?itemId=/content/aip/journal/jcp/134/8/10.1063/1.3559676&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Generalizing Rosenfeld's excess-entropy scaling to predict long-time diffusivity in dense fluids of Brownian particles: From hard to ultrasoft interactions
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/8/10.1063/1.3559676
10.1063/1.3559676
SEARCH_EXPAND_ITEM