Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/134/9/10.1063/1.3563631
1.
1. B. C. Gates, Catalytic Chemistry (Wiley, New York, 1992).
2.
2. R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H.-J. Freund, Gold Bull. 37, 72 (2004);
http://dx.doi.org/10.1016/j.susc.2004.01.029
2.G. C. Bond, C. Louis, and D. T. Thomson, Catalysis by Gold (Imperial College Press, London, 2006);
2.Nanocatalysis, edited by U. Heiz and U. Landman (Springer-Verlag, Berlin, 2007).
3.
3. M. Schmidt, A. Masson, and C. Bréchignac, Phys. Rev. Lett. 91, 243401 (2003);
http://dx.doi.org/10.1103/PhysRevLett.91.243401
3.J. Hagen, L. D. Socaciu, J. Le Roux, D. Popolan, T. M. Bernhardt, L. Wöste, R. Mitrić, H. Noack, and V. Bonačić-Koutecký, J. Am. Chem. Soc. 126, 3442 (2004);
http://dx.doi.org/10.1021/ja038948r
3.J. Roithov and D. Schrder, J. Am. Chem. Soc. 129, 15311 (2007).
http://dx.doi.org/10.1021/ja075628p
4.
4. L. D. Socaciu, J. Hagen, J. Le Roux, D. Popolan, T. M. Bernhardt, L. Wöste, and S. Vajda, J. Chem. Phys. 120, 2078 (2004).
http://dx.doi.org/10.1063/1.1644103
5.
5. M. L. Campbell, J. Phys. Chem. A 107, 3048 (2003);
http://dx.doi.org/10.1021/jp021957m
5.V. Blagojevic, M. J. Y. Jarvis, E. Flaim, G. K. Koyanagi, V. V. Lavrov, and D. K. Bohme, Angew. Chem. Int. Ed. 42, 4923 (2003);
http://dx.doi.org/10.1002/anie.200351628
5.V. V. Lavrov, V. Blagojevic, G. K. Koyanagi, G. Orlova, and D. K. Bohme, J. Phys. Chem. A 108, 5610 (2004).
http://dx.doi.org/10.1021/jp049931d
6.
6. F.-X. Li, K. Gorham, and P. B. Armentrout, J. Phys. Chem. A 114, 11043 (2010).
http://dx.doi.org/10.1021/jp100566t
7.
7. O. P. Balaj, I. Balteanu, T. T. J. Roßteuscher, M. K. Beyer, and V. E. Bondybey, Angew. Chem. Int. Ed. 43, 6519 (2004).
http://dx.doi.org/10.1002/anie.200461215
8.
8. S. M. Hamilton, W. S. Hopkins, D. J. Harding, T. R. Walsh, P. Gruene, M. Haertelt, A. Fielicke, G. Meijer, and S. R. Mackenzie, J. Am. Chem. Soc. 132, 1448 (2010).
http://dx.doi.org/10.1021/ja907496c
9.
9. A. Fielicke, G. von Helden, G. Meijer, D. B. Pedersen, B. Simard, and D. M. Rayner, J. Phys. Chem. B 109, 23935 (2005);
http://dx.doi.org/10.1021/jp055856a
9.A. Fielicke, G. von Helden, G. Meijer, D. B. Pedersen, B. Simard, and D. M. Rayner, J. Am. Chem. Soc. 127, 8416 (2005).
http://dx.doi.org/10.1021/ja0509230
10.
10. D. M. Popolan, M. Nößler, R. Mitrić, T. M. Bernhardt, and V. Bonačić-Koutecký, Phys. Chem. Chem. Phys. 12, 7865 (2010).
http://dx.doi.org/10.1039/b924022e
11.
11. D. M. Popolan, M. Nößler, R. Mitrić, T. M. Bernhardt, and V. Bonačić-Koutecký, J. Phys. Chem. A 115, 951 (2011).
http://dx.doi.org/10.1021/jp106884p
12.
12. T. M. Bernhardt, J. Hagen, S. M. Lang, D. M. Popolan, L. Socaciu-Siebert, and L. Wöste, J. Phys. Chem. A 113, 2724 (2009).
http://dx.doi.org/10.1021/jp810055q
13.
13. T. H. Lee and K. M. Ervin, J. Phys. Chem. 98, 10023 (1994);
http://dx.doi.org/10.1021/j100091a014
13.T. M. Bernhardt, L. D. Socaciu-Siebert, J. Hagen, and L. Wöste, Appl. Catal. A 291, 170 (2005).
http://dx.doi.org/10.1016/j.apcata.2005.02.041
14.
14. L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, and U. Landman, J. Am. Chem. Soc. 125, 10437 (2003).
http://dx.doi.org/10.1021/ja027926m
15.
15. W. T. Wallace and R. L. Whetten, J. Am. Chem. Soc. 124, 7499 (2002).
http://dx.doi.org/10.1021/ja0175439
16.
16. M. L. Kimble, A. W. Castleman , Jr., R. Mitrić, C. Bürgel, and V. Bonačić-Koutecký, J. Am. Chem. Soc. 126, 2526 (2004);
http://dx.doi.org/10.1021/ja030544b
16.M. L. Kimble, N. A. Moore, G. E. Johnson, A. W. Castleman, Jr., C. Bürgel, R. Mitrić, and V. Bonačić-Koutecký, J. Chem. Phys. 125, 204311 (2006).
http://dx.doi.org/10.1063/1.2371002
17.
17. G. E. Johnson, N. M. Reilly, E. C. Tyo, and A. W. Castleman, Jr., J. Phys. Chem. C 112, 9730 (2008).
http://dx.doi.org/10.1021/jp801514d
18.
18. T. M. Bernhardt, Int. J. Mass Spectrom. 243, 1 (2005).
http://dx.doi.org/10.1016/j.ijms.2004.12.015
19.
19.To our knowledge, the formation of clusters containing equal amounts of N2 and O2 units as in Ag3O(N2O2)+ in addition to oxygen atoms, due to the reaction with N2O, has not yet been reported. Of course, the experimental mass spectrometry investigation cannot determine the geometric structure of the Ag3O(N2O2)+ complex. Nevertheless, several possible structures can be proposed for the N2–O2 unit: (i) two separate NO molecules; (ii) (NO)2; or (iii) N2 and O2 molecules independently bound to the cluster. Configurations of the type Ag3NONO2+ or Ag3N2O3+ can also not be excluded. Detailed reaction kinetics measurements and theoretical simulations are in progress [D. M. Popolan, M. Nößler, R. Mitrić, T. M. Bernhardt, and V. Bonačić-Koutecký, “Temperature dependent reactivity of silver and gold cluster cations with N2O,” Int. J. Mass Spectrom. (to be published)].
20.
20. M. L. Kimble and A. W. Castleman , Jr., Int. J. Mass Spectrom. 233, 99 (2004);
http://dx.doi.org/10.1016/j.ijms.2003.11.018
20.C. Bürgel, N. M. Reilly, G. E. Johnson, R. Mitrić, M. L. Kimble, A. W. Castleman, Jr., and V. Bonačić-Koutecký, J. Am. Chem. Soc. 130, 1694 (2008).
http://dx.doi.org/10.1021/ja0768542
21.
21.In supplementary experiments it could been shown that irradiation with 266 nm UV light completely depletes the silver oxide signals and is reformed. In this case no CO oxidation products are observed at all.
22.
22. X. Bao, M. Muhler, B. Pettinger, R. Schlögl, and G. Ertl, Catal. Lett. 22, 215 (1993);
http://dx.doi.org/10.1007/BF00810368
22.X. Bao, J. V. Barth, G. Lehmpfuhl, R. Schuster, Y. Uchida, R. Schlögl, and G. Ertl, Surf. Sci. 284, 14 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90522-L
23.
23. B. Pettinger, X. Bao, I. Wilcock, M. Muhler, R. Schlögl, and G. Ertl, Angew. Chem. 106, 113 (1994).
http://dx.doi.org/10.1002/ange.19941060124
24.
24. H. Schubert, U. Tegtmeyer, D. Herein, X. Bao, M. Muhler, and R. Schlögl, Catal. Lett. 33, 305 (1995).
http://dx.doi.org/10.1007/BF00814233
25.
25. D. S. Su, T. Jacob, T. W. Hansen, D. Wang, R. Schlögl, B. Freitag, and S. Kujawa, Angew. Chem. Int. Ed. 47, 5005 (2008).
http://dx.doi.org/10.1002/anie.200800406
http://aip.metastore.ingenta.com/content/aip/journal/jcp/134/9/10.1063/1.3563631
Loading
/content/aip/journal/jcp/134/9/10.1063/1.3563631
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/134/9/10.1063/1.3563631
2011-03-07
2016-09-28

Abstract

The oxidation of carbon monoxide with nitrous oxide on mass-selected and clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of the cluster itself acts as reactive species that facilitates the formation of CO2 from N2O and CO, for silver the oxidizedclustersAg3O x + (n = 1–3) are identified as active in the CO oxidationreaction. Thus, in the case of the silvercluster cations N2O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/134/9/1.3563631.html;jsessionid=bnbJAk8Yodedz37d9OecHfar.x-aip-live-02?itemId=/content/aip/journal/jcp/134/9/10.1063/1.3563631&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/134/9/10.1063/1.3563631&pageURL=http://scitation.aip.org/content/aip/journal/jcp/134/9/10.1063/1.3563631'
Right1,Right2,Right3,