Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/1/10.1063/1.3605504
1.
1. M. E. Casida, in Recent Advances in Density Functional Methods, Part I, edited by D. P. Chong (World Scientific, Singapore, 1995);
1.M. E. Casida, in Recent Developments and Applications in Density Functional Theory, edited by J. M. Seminario (Elsevier, Amsterdam, 1996).
2.
2. M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1212
3.
3. S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends, Comput. Phys. Commun. 118, 119 (1999).
http://dx.doi.org/10.1016/S0010-4655(99)00187-3
4.
4. N. T. Maitra, K. Burke, H. Appel, E. K. U. Gross, and R. van Leeuwen, in Reviews in Modern Quantum Chemistry: A Celebration of the Contributions of R. G. Parr, edited by K. D. Sen (World Scientific, Singapore, 2001).
5.
5. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01149-5
6.
6. M. A. L. Marques and E. K. U. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004).
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094449
7.
7. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
8.
8. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).
http://dx.doi.org/10.1021/j100180a030
9.
9. J. Oddershede, Adv. Chem. Phys. 69, 201 (1987).
http://dx.doi.org/10.1002/SERIES2007
10.
10. F. Furche and R. Ahlrichs, J. Chem. Phys. 117, 7433 (2002);
http://dx.doi.org/10.1063/1.1508368
10.F. Furche and R. Ahlrichs, J. Chem. Phys. 121, 12772E (2004).
http://dx.doi.org/10.1063/1.1824903
11.
11. D. Maurice and M. Head-Gordon, Mol. Phys. 96, 1533 (1999).
http://dx.doi.org/10.1080/00268979909483096
12.
12. J. F. Stanton, J. Chem. Phys. 99, 8840 (1993).
http://dx.doi.org/10.1063/1.465552
13.
13. J. F. Stanton and J. Gauss, J. Chem. Phys. 103, 8931 (1995).
http://dx.doi.org/10.1063/1.470083
14.
14. Y. Osamura, Theor. Chim. Acta 76, 113 (1989).
http://dx.doi.org/10.1007/BF00532128
15.
15. G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, and V. Barone, J. Chem. Phys. 124, 094107 (2006).
http://dx.doi.org/10.1063/1.2173258
16.
16. F. Liu, Z. Gan, Y. Shao, C.-P. Hsu, A. Dreuw, M. Head-Gordon, B. T. Miller, B. R. Brooks, J.-G. Yu, T. R. Furlani, and J. Kong, Mol. Phys. 108, 2791 (2010).
http://dx.doi.org/10.1080/00268976.2010.526642
17.
17. C. V. Caillie and R. D. Amos, Chem. Phys. Lett. 308, 249 (1999);
http://dx.doi.org/10.1016/S0009-2614(99)00646-6
17.C. V. Caillie and R. D. Amos, Chem. Phys. Lett. 317, 159 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01346-9
18.
18. J. Gerratt and I. M. Mills, J. Chem. Phys. 49, 1749 (1968).
http://dx.doi.org/10.1063/1.1670299
19.
19. N. C. Handy and H. F. Schaefer III, J. Chem. Phys. 81, 5031 (1984).
http://dx.doi.org/10.1063/1.447489
20.
20. M. Chiba, T. Tsuneda, and K. Hirao, J. Chem. Phys. 124, 144106 (2006).
http://dx.doi.org/10.1063/1.2186995
21.
21. R. Cammi, B. Mennucci, and J. Tomasi, J. Phys. Chem. A 104, 5631 (2000).
http://dx.doi.org/10.1021/jp000156l
22.
22. J. Liu and W. Z. Liang, J. Chem. Phys. 134, 044114 (2011).
http://dx.doi.org/10.1063/1.3548063
23.
23. J. A. Pople , R. Krishnan , H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem. Symp. 13, 255 (1979).
http://dx.doi.org/10.1002/qua.560160825
24.
24. N. C. Handy, R. D. Amos, J. F. Gaw, J. E. Rice, and E. D. Simandiras, Chem. Phys. Lett. 120, 151 (1985).
http://dx.doi.org/10.1016/0009-2614(85)87031-7
25.
25. D. J. Fox, Y. Osamura, M. R. Hoffmann, J. F. Gaw, G. Fitzgerald, Y. Yamaguchi, and H. F. Schaefer, Chem. Phys. Lett. 102, 17 (1983).
http://dx.doi.org/10.1016/0009-2614(83)80648-4
26.
26. H. Koch, H. J. A. Jensen, P. Jørgensen, T. Helgaker, G. E. Scuseria, and H. F. Schaefer, J. Chem. Phys. 92, 4924 (1990).
http://dx.doi.org/10.1063/1.457710
27.
27. J. Gauss, J. F. Stanton, and R. J. Bartlett, J. Chem. Phys. 97, 7825 (1992).
http://dx.doi.org/10.1063/1.463452
28.
28. M. Kállay and J. Gauss, J. Chem. Phys. 120, 6841 (2004).
http://dx.doi.org/10.1063/1.1668632
29.
29. W. Z. Liang, Y. Zhao, and M. Head-Gordon, J. Chem. Phys. 123, 194106 (2005).
http://dx.doi.org/10.1063/1.2114847
30.
30. Y. Yamaguchi, O. Osamura, J. D. Goddard, and H. F. Schaefer III, A New Dimension to Quantum Mechanics: Analytical Derivative Methods in Ab Initio Molecular Electronic Structure Theory (Oxford University Press, Oxford, 1994).
31.
31. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
32.
32. A. D. Becke, J. Chem. Phys. 98, 1672 (1993).
http://dx.doi.org/10.1063/1.464913
33.
33. U. Ekström, L. Visscher, R. Bast, A. J. Thorvaldsen, and K. Ruud, J. Chem. Theory Comput. 6, 1971 (2010).
http://dx.doi.org/10.1021/ct100117s
34.
34. A. D. Becke, J. Chem. Phys. 88, 2547 (1988).
http://dx.doi.org/10.1063/1.454033
35.
35. M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and P. DeMarco, Maple 10 Programming Guide (2005). See http://academic.research.microsoft.com/Publication/3357159/maple-10-advanced-programming-guide.
36.
36. Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio, Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006).
http://dx.doi.org/10.1039/b517914a
37.
37. P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930);
http://dx.doi.org/10.1017/S0305004100016108
37.S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
http://dx.doi.org/10.1139/p80-159
38.
38. A. D. Becke, Phys. Rev. A 38, 3098 (1988);
http://dx.doi.org/10.1103/PhysRevA.38.3098
38.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
39.
39. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1979), Vol. IV.
40.
40. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1966), Vol. II.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/1/10.1063/1.3605504
Loading
/content/aip/journal/jcp/135/1/10.1063/1.3605504
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/1/10.1063/1.3605504
2011-07-07
2016-02-13

Abstract

We present the analytical expression and computer implementation for the second-order energy derivatives of the electronic excited state with respect to the nuclear coordinates in the time-dependent density functional theory (TDDFT) with Gaussian atomic orbital basis sets. Here, the Tamm-Dancoff approximation to the full TDDFT is adopted, and therefore the formulation process of TDDFT excited-state Hessian is similar to that of configuration interaction singles (CIS) Hessian. However, due to the replacement of the Hartree-Fock exchange integrals in CIS with the exchange-correlation kernels in TDDFT, many quantitative changes in the derived equations are arisen. The replacement also causes additional technical difficulties associated with the calculation of a large number of multiple-order functional derivatives with respect to the density variables and the nuclear coordinates. Numerical tests on a set of test molecules are performed. The simulated excited-state vibrational frequencies by the analytical Hessian approach are compared with those computed by CIS and the finite-difference method. It is found that the analytical Hessian method is superior to the finite-difference method in terms of the computational accuracy and efficiency. The numerical differentiation can be difficult due to root flipping for excited states that are close in energy. TDDFT yields more exact excited-state vibrational frequencies than CIS, which usually overestimates the values.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/1/1.3605504.html;jsessionid=2cbkv4p02e7lc.x-aip-live-02?itemId=/content/aip/journal/jcp/135/1/10.1063/1.3605504&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd