Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/10/10.1063/1.3623585
1.
1.T. S. Ingebrigtsen, S. Toxvaerd, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104102 (2011).
http://dx.doi.org/10.1063/1.3623586
2.
2.S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, 3rd ed. (Springer, Berlin, 2004).
3.
3. N. J. Hicks, Notes on Differential Geometry (van Nostrand Reinhold, New York, 1965);
3.P. Dombrowski, Math. Nacthr. 38, 133 (1968).
http://dx.doi.org/10.1002/mana.19680380302
4.
4. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972);
4.L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 5th ed. (Pergamon, London, 1975).
5.
5. C. Wang and R. M. Stratt, J. Chem. Phys. 127, 224503 (2007);
http://dx.doi.org/10.1063/1.2801994
5.C. Wang and R. M. Stratt, J. Chem. Phys. 127, 224504 (2007).
http://dx.doi.org/10.1063/1.2801995
6.
6.C. N. Nguyen and R. M. Stratt, J. Chem. Phys. 133, 124503 (2010).
http://dx.doi.org/10.1063/1.3481655
7.
7. U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008);
http://dx.doi.org/10.1103/PhysRevLett.100.015701
7.U. R. Pedersen, T. Christensen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. E 77, 011201 (2008);
http://dx.doi.org/10.1103/PhysRevE.77.011201
7.T. B. Schrøder, U. R. Pedersen, N. P. Bailey, S. Toxvaerd, and J. C. Dyre, Phys. Rev. E 80, 041502 (2009);
http://dx.doi.org/10.1103/PhysRevE.80.041502
7.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008);
http://dx.doi.org/10.1063/1.2982247
7.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008);
http://dx.doi.org/10.1063/1.2982249
7.T. B. Schrøder, N. P. Bailey, U. R. Pedersen, N. Gnan, and J. C. Dyre, J. Chem. Phys. 131, 234503 (2009);
http://dx.doi.org/10.1063/1.3265955
7.U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 105, 157801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.157801
8.
8. N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009);
http://dx.doi.org/10.1063/1.3265957
8.N. Gnan, C. Maggi, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 104, 125902 (2010);
http://dx.doi.org/10.1103/PhysRevLett.104.125902
8.T. B. Schrøder, N. Gnan, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 134, 164505 (2011).
http://dx.doi.org/10.1063/1.3582900
9.
9.U. R. Pedersen, N. Gnan, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Non-Cryst. Solids 357, 320 (2011).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.063
10.
10. R. M. J. Cotterill and J. U. Madsen, Phys. Rev. B 33, 262 (1986);
http://dx.doi.org/10.1103/PhysRevB.33.262
10.R. M. J. Cotterill and J. U. Madsen, in Characterizing Complex Systems, edited by H. Bohr (World Scientific, Singapore, 1990), p. 177;
10.J. Li, E. Platt, B. Waszkowycz, R. Cotterill, and B. Robson, Biophys. Chem. 43, 221 (1992);
http://dx.doi.org/10.1016/0301-4622(92)85023-W
10.R. M. J. Cotterill and J. U. Madsen, J. Phys.: Condens. Matter 18, 6507 (2006).
http://dx.doi.org/10.1088/0953-8984/18/28/006
11.
11. A. Scala, L. Angelani, R. Di Leonardo, G. Ruocco, and F. Sciortino, Philos. Mag. B 82, 151 (2002);
http://dx.doi.org/10.1080/13642810110085181
11.L. Angelani, R. Di Leonardo, G. Ruocco, A. Scala, and F. Sciortino, J. Chem. Phys. 116, 10297 (2002).
http://dx.doi.org/10.1063/1.1475764
12.
12. V. Caselles, R. Kimmel, and G. Sapiro, Int. J. Comput. Vis. 22, 61 (1997);
http://dx.doi.org/10.1023/A:1007979827043
12.R. Kimmel and J. A. Sethian, Proc. Natl. Acad. Sci. U.S.A. 95, 8431 (1998);
http://dx.doi.org/10.1073/pnas.95.15.8431
12.J. A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press, Cambridge, England, 1999);
12.L.-T. Cheng, P. Burchard, B. Merriman, and S. Osher, J. Comput. Phys. 175, 604 (2002);
http://dx.doi.org/10.1006/jcph.2001.6960
12.A. Rapallo, J. Chem. Phys. 121, 4033 (2004);
http://dx.doi.org/10.1063/1.1776117
12.L. Ying and E. J. Candes, J. Comput. Phys. 220, 6 (2006);
http://dx.doi.org/10.1016/j.jcp.2006.07.032
12.A. Rapallo, J. Comput. Chem. 27, 414 (2006);
http://dx.doi.org/10.1002/jcc.20342
12.A. Spira and R. Kimmel, J. Comput. Phys. 223, 235 (2007);
http://dx.doi.org/10.1016/j.jcp.2006.09.008
12.H. Schwetlick and J. Zimmer, J. Chem. Phys. 130, 124106 (2009).
http://dx.doi.org/10.1063/1.3096294
13.
13.S. Toxvaerd, Phys. Rev. E 50, 2271 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.2271
14.
14.S. Toxvaerd, O. J. Heilmann, T. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 131, 064102 (2009).
http://dx.doi.org/10.1063/1.3194785
15.
15. J. E. Marsden and M. West, Acta Numerica 10, 357 (2001);
http://dx.doi.org/10.1017/S096249290100006X
15.R. Elber, A. Cardenas, A. Ghosh, and H. A. Stern, Adv. Chem. Phys. 126, 93 (2003);
http://dx.doi.org/10.1002/0471428019
15.A. Lew, “Variational time integrators in computational solid mechanics,” Ph.D. dissertation, California Institute of Technology, 2003;
15.C. G. Gray, G. Karl, and V. A. Novikov, Rep. Prog. Phys. 67, 159 (2004);
http://dx.doi.org/10.1088/0034-4885/67/2/R02
15.A. Lew, J. E. Marsden, M. Ortiz, and M. West, Int. J. Numer. Methods Eng. 60, 153 (2004);
http://dx.doi.org/10.1002/nme.958
15.M. West, “Variational integrators,” Ph.D. dissertation, California Institute of Technology, 2004;
15.T. J. Bridges and S. Reich, J. Phys. A 39, 5287 (2006);
http://dx.doi.org/10.1088/0305-4470/39/19/S02
15.E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration - Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed. (Springer, Berlin, 2006);
15.R. I. McLachlan and G. R. W. Quispel, J. Phys. A 39, 5251 (2006).
http://dx.doi.org/10.1088/0305-4470/39/19/S01
16.
16.A. Stein and M. Desbrun, in Discrete Differential Geometry: An Applied Introduction, edited by M. Desbrun, P. Schroeder, and M. Wardetzky (Columbia University, New York, 2008), p. 95.
17.
17.All simulations were performed using a molecular dynamics code optimized for NVIDIA graphics cards, which is available as open source code at http://rumd.org.
18.
18. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science, Oxford, 1987);
18.D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, New York, 2002).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/10/10.1063/1.3623585
Loading
/content/aip/journal/jcp/135/10/10.1063/1.3623585
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/10/10.1063/1.3623585
2011-09-08
2016-12-08

Abstract

An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs in order to compensate for the accumulation of numerical errors that eventually lead to “entropic drift” of the potential energy towards higher values. A modification of the basic NVU algorithm is introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones liquid.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/10/1.3623585.html;jsessionid=rqKt_PhUoGiqWID_JpEGkC0X.x-aip-live-02?itemId=/content/aip/journal/jcp/135/10/10.1063/1.3623585&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/10/10.1063/1.3623585&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/10/10.1063/1.3623585'
Right1,Right2,Right3,