Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/10/10.1063/1.3623586
1.
1. T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104101 (2011).
http://dx.doi.org/10.1063/1.3623585
2.
2. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science, Oxford, 1987);
2.D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, New York, 2002).
3.
3. R. M. J. Cotterill, Phys. Rev. B 33, 262 (1986);
http://dx.doi.org/10.1103/PhysRevB.33.262
3.R. M. J. Cotterill and J. U. Madsen, in Characterizing Complex Systems, edited by H. Bohr (World Scientific, Singapore, 1990), p. 177;
3.J. Li, E. Platt, B. Waszkowycz, R. Cotterill, and B. Robson, Biophys. Chem. 43, 221 (1992);
http://dx.doi.org/10.1016/0301-4622(92)85023-W
3.R. M. J. Cotterill and J. U. Madsen, J. Phys.: Condens. Matter 18, 6507 (2006).
http://dx.doi.org/10.1088/0953-8984/18/28/006
4.
4. A. Scala, L. Angelani, R. Di Leonardo, G. Ruocco, and F. Sciortino, Philos. Mag. B 82, 151 (2002).
http://dx.doi.org/10.1080/13642810110085181
5.
5. C. Wang and R. M. Stratt, J. Chem. Phys. 127, 224503 (2007);
http://dx.doi.org/10.1063/1.2801994
5.C. Wang and R. M. Stratt, J. Chem. Phys. 127, 224504 (2007);
http://dx.doi.org/10.1063/1.2801995
5.C. N. Nguyen and R. M. Stratt, J. Chem. Phys. 133, 124503 (2010).
http://dx.doi.org/10.1063/1.3481655
6.
6. M. Goldstein, J. Chem. Phys. 51, 3728 (1969);
http://dx.doi.org/10.1063/1.1672587
6.F. H. Stillinger, Science 267, 1935 (1995);
http://dx.doi.org/10.1126/science.267.5206.1935
6.F. Sciortino, J. Stat. Mech.: Theory Exp. 2005, 35 (2005);
http://dx.doi.org/10.1088/1742-5468/2005/05/P05015
6.A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).
http://dx.doi.org/10.1088/0953-8984/20/37/373101
7.
7. T. Gleim, W. Kob, and K. Binder, Phys. Rev. Lett. 81, 4404 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4404
8.
8. W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995);
http://dx.doi.org/10.1103/PhysRevE.51.4626
8.W. Kob and H. C. Andersen, Phys. Rev. E, 52, 4134 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.4134
9.
9. G. Szamel and E. Flenner, Europhys. Lett. 67, 779 (2004);
http://dx.doi.org/10.1209/epl/i2004-10117-6
9.E. Flenner and G. Szamel, Phys. Rev. E 72, 011205 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.011205
10.
10. L. Berthier and W. Kob, J. Phys.: Condens. Matter 19, 205130 (2007);
http://dx.doi.org/10.1088/0953-8984/19/20/205130
10.L. Berthier, Phys. Rev. E 76, 011507 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.011507
11.
11. S. Nosé, J. Chem. Phys. 81, 511 (1984);
http://dx.doi.org/10.1063/1.447334
11.W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
12.
12. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
http://dx.doi.org/10.1063/1.1699114
13.
13. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
http://dx.doi.org/10.1063/1.1674820
14.
14. L. Verlet, Phys. Rev. 159, 98 (1967).
http://dx.doi.org/10.1103/PhysRev.159.98
15.
15. All simulations were performed using a molecular dynamics code optimized for NVIDIA graphics cards, which is available as open source code at http://rumd.org.
16.
16. U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008);
http://dx.doi.org/10.1103/PhysRevLett.100.015701
16.U. R. Pedersen, T. Christensen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. E 77, 011201 (2008);
http://dx.doi.org/10.1103/PhysRevE.77.011201
16.T. B. Schrøder, U. R. Pedersen, N. P. Bailey, S. Toxvaerd, and J. C. Dyre, Phys. Rev. E 80, 041502 (2009);
http://dx.doi.org/10.1103/PhysRevE.80.041502
16.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008);
http://dx.doi.org/10.1063/1.2982247
16.N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184508 (2008);
http://dx.doi.org/10.1063/1.2982249
16.T. B. Schrøder, N. P. Bailey, U. R. Pedersen, N. Gnan, and J. C. Dyre, J. Chem. Phys. 131, 234503 (2009);
http://dx.doi.org/10.1063/1.3265955
16.N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009);
http://dx.doi.org/10.1063/1.3265957
16.N. Gnan, C. Maggi, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 104, 125902 (2010);
http://dx.doi.org/10.1103/PhysRevLett.104.125902
16.T. B. Schrøder, N. Gnan, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 134, 164505 (2011).
http://dx.doi.org/10.1063/1.3582900
17.
17. U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 105, 157801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.157801
18.
18. V. V. Hoang and T. Odagaki, Physica B 403, 3910 (2008). The Lennard-Jones Gaussian pair potential is where σ0 = 0.14, ε0 = 1.5, and r0 = 1.47.
http://dx.doi.org/10.1016/j.physb.2007.10.015
19.
19. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed. (Cambridge University Press, Cambridge, England, 1999);
19.H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1950).
20.
20. L. D. Landau and E. M. Lifshitz, Mechanics, 2nd ed. (Pergamon, Oxford, 1969).
21.
21. Wikipedia article “Maupertuis’ principle,” see http://wikipedia.org.
22.
22. C. Toninelli, M. Wyart, L. Berthier, G. Biroli, and J.-P. Bouchaud, Phys. Rev. E 71, 041505 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.041505
23.
23. S. Toxvaerd, Mol. Phys. 72, 159 (1991);
http://dx.doi.org/10.1080/00268979100100101
23.T. Ingebrigtsen, O. J. Heilmann, S. Toxvaerd, and J. C. Dyre, J. Chem. Phys. 132, 154106 (2010).
http://dx.doi.org/10.1063/1.3363609
24.
24. D. J. Evans and B. L. Holian, J. Chem. Phys. 83, 4069 (1985).
http://dx.doi.org/10.1063/1.449071
25.
25. Wikipedia article “Geodesics as Hamiltonian flows,” see http://wikipedia.org.
26.
26. H. Hertz, Die Prinzipien der Mechanik, in Neuem Zusammenhange Dargestellt (Johann Ambrosius Barth, Leipzig, 1894);
26.J. Lützen, Arch. Hist. Exact Sci. 49, 1 (1995);
http://dx.doi.org/10.1007/BF00374699
26.J. Lützen, Mechanistic Images in Geometric Form: Heinrich Hertz's “Principles of Mechanics” (Oxford University Press, Oxford, 2005);
26.J. Preston, Stud. Hist. Philos. Sci. 39, 91 (2008).
http://dx.doi.org/10.1016/j.shpsa.2007.11.007
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/10/10.1063/1.3623586
Loading
/content/aip/journal/jcp/135/10/10.1063/1.3623586
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/10/10.1063/1.3623586
2011-09-08
2016-09-27

Abstract

In the companion paper [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, “NVUdynamics. I. Geodesic motion on the constant-potential-energy hypersurface,” J. Chem. Phys. (in press)] an algorithm was developed for tracing out a geodesic curve on the constant-potential-energy hypersurface. Here, simulations of NVUdynamics are compared to results for four other dynamics, both deterministic and stochastic. First, NVUdynamics is compared to the standard energy-conserving Newtonian NVEdynamics by simulations of the Kob-Andersen binary Lennard-Jones liquid, its WCA version (i.e., with cut-off's at the pair potential minima), and the Lennard-Jones Gaussian liquid. We find identical results for all quantities probed: radial distribution functions, incoherent intermediate scattering functions, and mean-square displacement as function of time. Arguments are presented for the equivalence of NVU and NVEdynamics in the thermodynamic limit; in particular, to leading order in 1/N these two dynamics give identical time-autocorrelation functions. In the final part of the paper, NVUdynamics is compared to Monte Carlodynamics, to a diffusive dynamics of small-step random walks on the constant-potential-energy hypersurface, and to Nos-Hoover NVTdynamics. If time is scaled for the two stochastic dynamics to make single-particle diffusion constants identical to that of NVEdynamics, the simulations show that all five dynamics are equivalent at low temperatures except at short times.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/10/1.3623586.html;jsessionid=Z8eYhr_itOrB3fmukBzvWWZh.x-aip-live-02?itemId=/content/aip/journal/jcp/135/10/10.1063/1.3623586&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/10/10.1063/1.3623586&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/10/10.1063/1.3623586'
Right1,Right2,Right3,