1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Communication: Strong excitonic and vibronic effects determine the optical properties of Li2O2
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/12/10.1063/1.3645544
1.
1. K. M. Abraham and Z. Jiang, J. Electrochem. Soc. 143(1), 1 (1996).
http://dx.doi.org/10.1149/1.1836378
2.
2. T. Ogasawara, A. Debart, M. Holzapfel, P. Novak, and P. G. Bruce, J. Am. Chem. Soc. 128(4), 1390 (2006).
http://dx.doi.org/10.1021/ja056811q
3.
3. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, J. Phys. Chem. Lett. 1(14), 2193 (2010).
http://dx.doi.org/10.1021/jz1005384
4.
4. B. D. McCloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar, and A. C. Luntz, J. Phys. Chem. Lett. 2(10), 1161 (2011).
http://dx.doi.org/10.1021/jz200352v
5.
5. H. H. Eysel and S. Thym, Z. Anorg. Allg. Chem. 411(2), 97 (1975).
http://dx.doi.org/10.1002/zaac.19754110202
6.
6. J. Z. Chen, J. S. Hummelshoj, K. S. Thygesen, J. S. G. Myrdal, J. K. Norskov, and T. Vegge, Catal. Today 165(1), 2 (2011).
http://dx.doi.org/10.1016/j.cattod.2010.12.022
7.
7. T. R. Griffiths, K. A. K. Lott, and M. C. R. Symons, Anal. Chem. 31(8), 1338 (1959).
http://dx.doi.org/10.1021/ac60152a027
8.
8. T. Andersen and J. L. Baptista, Phys. Status Solidi B 44(1), 29 (1971).
http://dx.doi.org/10.1002/pssb.2220440103
9.
9. P. Kubelka and F. Munk, Ann. Tech. Phys. 11, 593 (1931).
10.
10. E. E. Salpeter and H. A. Bethe, Phys. Rev. 84(6), 1232 (1951).
http://dx.doi.org/10.1103/PhysRev.84.1232
11.
11. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74(2), 601 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.601
12.
12. L. Hedin, Phys. Rev. 139(3A), A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
13.
13. R. W. Godby and R. J. Needs, Phys. Rev. Lett. 62(10), 1169 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1169
14.
14. L. Chiodo, J. M. Garcia-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, and A. Rubio, Phys. Rev. B 82(4), 045207 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045207
15.
15.See http://www.quantum-espresso.org/ for the details of Quantum Espresso Package.
16.
16. L. G. Cota and P. de la Mora, Acta Crystallogr. 61, 133 (2005).
http://dx.doi.org/10.1107/S0108768105003629
17.
17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
18.
18. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13(12), 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
19.
19. A. Marini, C. Hogan, M. Gruning, and D. Varsano, Comput. Phys. Commun. 180(8), 1392 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.02.003
20.
20. J. S. Hummelshoj, J. Blomqvist, S. Datta, T. Vegge, J. Rossmeisl, K. S. Thygesen, A. C. Luntz, K. W. Jacobsen, and J. K. Norskov, J. Chem. Phys. 132(7), 071101 (2010).
http://dx.doi.org/10.1063/1.3298994
21.
21. Y. N. Zhuravlev, N. G. Kravchenko, and O. S. Obolonskaya, Russ. J. Phys. Chem. B 4(1), 20 (2010).
http://dx.doi.org/10.1134/S1990793110010045
22.
22. H. Wu, H. Zhang, X. Cheng, and L. Cai, Philos. Mag. 87(23), 3373 (2007).
http://dx.doi.org/10.1080/14786430701286239
23.
23. G. T. Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comp. Chem. 22(9), 931 (2001).
http://dx.doi.org/10.1002/jcc.1056
24.
24. J. M. Garcia-Lastra, J. Y. Buzare, M. T. Barriuso, J. A. Aramburu, and M. Moreno, Phys. Rev. B 75(15), 155101 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155101
25.
25. E. Condon, Phys. Rev. 28(6), 1182 (1926).
http://dx.doi.org/10.1103/PhysRev.28.1182
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/12/10.1063/1.3645544
Loading
/content/aip/journal/jcp/135/12/10.1063/1.3645544
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/12/10.1063/1.3645544
2011-09-28
2015-03-28

Abstract

The band structure and optical absorptionspectrum of lithium peroxide (Li2O2) is calculated from first-principles using the G0W0 approximation and the Bethe-Salpeter equation, respectively. A strongly localized (Frenkel type) exciton corresponding to the π*→σ* transition on the O2 −2 peroxide ion gives rise to a narrow absorption peak around 1.2 eV below the calculated bandgap of 4.8 eV. In the excited state, the internal O2 −2 bond is significantly weakened due to the population of the σ* orbital. As a consequence, the bond is elongated by almost 0.5 Å leading to an extreme Stokes shift of 2.6 eV. The strong vibronic coupling entails significant broadening of the excitonic absorption peak in good agreement with diffuse reflectance data on Li2O2 which shows a rather featureless spectrum with an absorption onset around 3.0 eV. These results should be important for understanding the origin of the high potential losses and low current densities, which are presently limiting the performance of Li-air batteries.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/12/1.3645544.html;jsessionid=1m3d41fk36nf2.x-aip-live-03?itemId=/content/aip/journal/jcp/135/12/10.1063/1.3645544&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Strong excitonic and vibronic effects determine the optical properties of Li2O2
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/12/10.1063/1.3645544
10.1063/1.3645544
SEARCH_EXPAND_ITEM