Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. T. Smith, J. Meissner, S. Esmonde, H. J. Wong, and E. M. Meiering, Proc. Natl. Acad. Sci. U.S.A. 107(49), 20952 (2010).
2. T. Hagai and Y. Levy, Proc. Natl. Acad. Sci. U.S.A. 107(5), 2001 (2010).
3. D. Shental-Bechor and Y. Levy, Proc. Natl. Acad. Sci. U.S.A. 105(24), 8256 (2008).
4. D. Shental-Bechor and Y. Levy, Curr. Opin. Struct. Biol. 19, 524 (2009).
5. J. Price, D. Shental-Bechor, A. Dhar, M. Turner, E. T. Powers, M. Gruebele, Y. Levy, and J. W. Kelly, J. Am. Chem. Soc. 132, 15359 (2010).
6. E. K. Culyba, J. L. Price, S. R. Hanson, A. Dhar, C. H. Wong, M. Gruebele, E. T. Powers, and J. W. Kelly, Science 331, 571 (2011).
7. D. Thirumalai and G. H. Lorimer, Annu. Rev. Biophys. Biomol. Struct. 30, 245 (2001).
8. D. Thirumalai, D. K. Klimov, and G. H. Lorimer, Proc. Natl. Acad. Sci. U.S.A. 100(20), 11195 (2003).
9. H. X. Zhou and K. A. Dill, Biochemistry 40(38), 11289 (2001).
10. H. X. Zhou, G. Rivas, and A. P. Minton, Annu. Rev. Biophys. 37, 375 (2008).
11. M. S. Cheung and D. Thirumalai, J. Phys. Chem. B 111(28), 8250 (2007).
12. S. Q. Zhang and M. S. Cheung, Nano Lett. 7(11), 3438 (2007).
13. D. K. Klimov, D. Newfield, and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 99(12), 8019 (2002).
14. F. Takagi, N. Koga, and S. Takada, Proc. Natl. Acad. Sci. U.S.A. 100(20), 11367 (2003).
15. A. Baumketner, A. Jewett, and J. E. Shea, J. Mol. Biol. 332(3), 701 (2003).
16. M. Friedel, D. J. Sheeler, and J. E. Shea, J. Chem. Phys. 118(17), 8106 (2003).
17. J. Mittal and R. B. Best, Proc. Natl. Acad. Sci. U.S.A. 105(51), 20233 (2008).
18. J. England, D. Lucent, and V. Pande, Curr. Opin. Struct. Biol. 18(2), 163 (2008).
19. W. Wang, W. X. Xu, Y. Levy, E. Trizac, and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 106(14), 5517 (2009).
20. N. Rathore, T. Knotts, and J. de Pablo, Biophys. J. 90, 1767 (2006).

Data & Media loading...


Article metrics loading...



Conjugating flexible polymers (such as oligosaccharides) to proteins or confining a protein in a restricted volume often increases proteinthermal stability. In this communication, we investigate the interplay between conjugation and confinement which is not trivial as the magnitude and the mechanism of stabilization are different in each instance. Using coarse-grained computational approach the folding biophysics is studied when the protein is placed in a sphere of variable radius and is conjugated to 0–6 mono- or penta-saccharides. We observe a synergistic effect on thermal stability when short oligosaccharides are attached and the modified protein is confined in a small cage. However, when large oligosaccharides are added, a conflict between confinement and glycosylation arises as the stabilizing effect of the cage is dramatically reduced and it is almost impossible to further stabilize the protein beyond the mild stabilization induced by the sugars.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd