Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/14/10.1063/1.3651627
1.
1. Z. W. Salsburg, J. D. Jackson, W. Fickett, and W. W. Wood, J. Chem. Phys. 30, 65 (1959).
http://dx.doi.org/10.1063/1.1729945
2.
2. I. R. McDonald and K. Singer, Discuss. Faraday Soc. 43, 40 (1967).
http://dx.doi.org/10.1039/df9674300040
3.
3. J. P. Valleau and D. N. Card, J. Chem. Phys. 57, 5457 (1972).
http://dx.doi.org/10.1063/1.1678245
4.
4. C. H. Bennett, J. Comput. Phys. 22, 245 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90078-4
5.
5. M. Falcioni, E. Marinari, M. L. Paciello, G. Parisi, and B. Taglienti, Phys. Lett. B 108, 331 (1982);
http://dx.doi.org/10.1016/0370-2693(82)91205-9
5.E. Marinari, Nucl. Phys. B 235 [FS11], 123 (1984).
http://dx.doi.org/10.1016/0550-3213(84)90152-4
6.
6. G. Bhanot, S. Black, P. Carter, and R. Salvador, Phys. Lett. B 183, 331 (1987).
http://dx.doi.org/10.1016/0370-2693(87)90973-7
7.
7. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988);
http://dx.doi.org/10.1103/PhysRevLett.61.2635
7.A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1658 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1658.2
8.
8. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1195
9.
9. N. A. Alves, B. A. Berg, and R. Villanova, Phys. Rev. B 41, 383 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.383
10.
10. N. A. Alves, B. A. Berg, and S. Sanielevici, Nucl. Phys. B 376, 218 (1992).
http://dx.doi.org/10.1016/0550-3213(92)90075-M
11.
11. T. Bereau and R. H. Swendsen, J. Comput. Phys. 228, 6119 (2009).
http://dx.doi.org/10.1016/j.jcp.2009.05.011
12.
12. S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992).
http://dx.doi.org/10.1002/jcc.540130812
13.
13. S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, J. Comput. Chem. 16, 1339 (1995).
http://dx.doi.org/10.1002/jcc.540161104
14.
14. Y. Sugita, A. Kitao, and Y. Okamoto, J. Chem. Phys. 113, 6042 (2000).
http://dx.doi.org/10.1063/1.1308516
15.
15. A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers 60, 96 (2001).
http://dx.doi.org/10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F
16.
16. A. Mitsutake, Y. Sugita, and Y. Okamoto, J. Chem. Phys. 118, 6664 (2003).
http://dx.doi.org/10.1063/1.1555847
17.
17. A. Mitsutake, Y. Sugita, and Y. Okamoto, J. Chem. Phys. 118, 6676 (2003).
http://dx.doi.org/10.1063/1.1555849
18.
18. J. Kim and J. E. Straub, J. Chem. Phys. 130, 144114 (2009).
http://dx.doi.org/10.1063/1.3108523
19.
19. J. Kim, T. Keyes, and J. E. Straub, J. Chem. Phys. 132, 224107 (2010).
http://dx.doi.org/10.1063/1.3432176
20.
20. J. Kim and J. E. Straub, J. Chem. Phys. 133, 154101 (2010).
http://dx.doi.org/10.1063/1.3503503
21.
21. J. Kim, T. Keyes, and J. E. Straub, J. Chem. Phys. 135, 061103 (2011).
http://dx.doi.org/10.1063/1.3626150
22.
22. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2050
23.
23. F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.056101
24.
24. B. A. Berg, in Monte Carlo Methods, Fields Institute Communications Vol. 26, edited by N. Madras (American Mathematical Society, Providence, RI, 2000), p. 1.
25.
25. B. A. Berg, Comput. Phys. Commun. 153, 397 (2003).
http://dx.doi.org/10.1016/S0010-4655(03)00245-5
26.
26. S. Alder, S. Trebst, A. K. Hartmann, and M. Troyer, J. Stat. Mech.: Theory Exp. 2004, P07008 (2004).
http://dx.doi.org/10.1088/1742-5468/2004/07/P07008
27.
27. C. Junghans, M. Bachmann, H. Arkin, and W. Janke, Phys. Rev. Lett. 97, 218103 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.218103
28.
28. C. Junghans, M. Bachmann, H. Arkin, and W. Janke, J. Chem. Phys. 128, 085103 (2008).
http://dx.doi.org/10.1063/1.2830233
29.
29. C. Junghans, M. Bachmann, H. Arkin, and W. Janke, Eur. Phys. Lett. 87, 40002 (2009).
http://dx.doi.org/10.1209/0295-5075/87/40002
30.
30. R. B. Frigori, L. G. Rizzi, and N. A. Alves (unpublished).
31.
31. J. Barré, D. Mukamel, and S. Ruffo, Phys. Rev. Lett. 87, 030601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.030601
32.
32. R. S. Ellis, K. Haven, and B. Turkington, J. Stat. Phys. 101, 999 (2000).
http://dx.doi.org/10.1023/A:1026446225804
33.
33. L. Casetti and M. Kastner, Physica A 384, 318 (2007).
http://dx.doi.org/10.1016/j.physa.2007.05.043
34.
34. S. Ruffo, Eur. Phys. J. B 64, 355 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00044-x
35.
35. A. Campa, T. Dauxois, and S. Ruffo, Phys. Rep. 480, 57 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.07.001
36.
36. R. S. Ellis, H. Touchette, and B. Turkington, Physica A 335, 518 (2004).
http://dx.doi.org/10.1016/j.physa.2003.11.028
37.
37. D. H. E. Gross, Microcanonical Thermodynamics: Phase Transitions in Small Systems, Lecture Notes in Physics 66 (World Scientific, Singapore, 2001).
38.
38. F. Leyvraz and S. Ruffo, J. Phys. A: Math. Gen. 35, 285 (2002).
http://dx.doi.org/10.1088/0305-4470/35/2/308
39.
39. M. Costeniuc, R. S. Ellis, H. Touchette, and B. Turkington, Phys. Rev. E 73, 026105 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.026105
40.
40. K. De’Bell, A. B. MacIsaac, and J. P. Whitehead, Rev. Mod. Phys. 72, 225 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.225
41.
41. S. A. Cannas, M. F. Michelon, D. A. Stariolo, and F. A. Tamarit, Phys. Rev. B 73, 184425 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.184425
42.
42. L. G. Rizzi and N. A. Alves, Physica B 405, 1571 (2010).
http://dx.doi.org/10.1016/j.physb.2009.12.041
43.
43. J.-S. Wang and R. H. Swendsen, J. Stat. Phys. 106, 245 (2002).
http://dx.doi.org/10.1023/A:1013180330892
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/14/10.1063/1.3651627
Loading
/content/aip/journal/jcp/135/14/10.1063/1.3651627
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/14/10.1063/1.3651627
2011-10-10
2016-09-26

Abstract

A multicanonical update relation for calculation of the microcanonical entropyS micro (E) by means of the estimates of the inverse statistical temperature β S , is proposed. This inverse temperature is obtained from the recently proposed statistical temperature weighted histogram analysis method (ST-WHAM). The performance of ST-WHAM concerning the computation of S micro (E) from canonical measures, in a model with strong free-energy barriers, is also discussed on the basis of comparison with the multicanonical simulation estimates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/14/1.3651627.html;jsessionid=9qN0N94LpkS9G1U6RsD10ZK6.x-aip-live-03?itemId=/content/aip/journal/jcp/135/14/10.1063/1.3651627&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/14/10.1063/1.3651627&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/14/10.1063/1.3651627'
Right1,Right2,Right3,