Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/14/10.1063/1.3651800
1.
1. A. Einstein, Ann. Phys. 322, 549 (1905).
http://dx.doi.org/10.1002/andp.19053220806
2.
2. R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
3.
3. P. Schwille, U. Haupts, S. Maiti, and W. Webb, Biophys. J. 77, 2251 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77065-7
4.
4. P. Schwille, J. Korlach, and W. Webb, Cytometry 36, 176 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0320(19990701)36:3<176::AID-CYTO5>3.0.CO;2-F
5.
5. L. Wawrezinieck, H. Rigneault, D. Marguet, and P.-F. Lenne, Biophys. J. 89, 4029 (2008).
http://dx.doi.org/10.1529/biophysj.105.067959
6.
6. K. Ritchie, X.-Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara, and A. Kusumi, Biophys. J. 88, 2266 (2008).
http://dx.doi.org/10.1529/biophysj.104.054106
7.
7. J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, Phys. Rev. Lett. 106, 048103 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.048103
8.
8. A. Weigel, B. Simon, M. Tamkun, and D. Krapf, Proc. Natl. Acad. Sci. 108, 6438 (2011).
http://dx.doi.org/10.1073/pnas.1016325108
9.
9. S. Burov, J.-H. Jeon, R. Metzler, and E. Barkai, Phys. Chem. Chem. Phys. 13, 1800 (2011).
http://dx.doi.org/10.1039/c0cp01879a
10.
10. E. Flenner, J. Das, M. Rheinstädter, and I. Kosztin, Phys. Rev. E 79, 11907 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.011907
11.
11. J. Wohlert and O. Edholm, J. Chem. Phys. 125, 204703 (2006).
http://dx.doi.org/10.1063/1.2393240
12.
12. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, New York, 2001).
13.
13. D. V. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26, 1701 (2005).
http://dx.doi.org/10.1002/jcc.20291
14.
14. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
http://dx.doi.org/10.1063/1.470117
15.
15. J.-P. Ryckaert, G. Ciccotti, and H. Berendsen, J. Comput. Phys. 23, 327 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
16.
16. N. Kucerka, S. Tristram-Nagle, and J. F. Nagle, J. Membr. Biol. 208, 193 (2005).
http://dx.doi.org/10.1007/s00232-005-7006-8
17.
17. H. Berendsen, J. Postma, W. van Gunsteren, A. DiNola, and J. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
18.
18. J.-H. Jeon and R. Metzler, J. Phys. A: Math. Theor. 43, 252001 (2010).
http://dx.doi.org/10.1088/1751-8113/43/25/252001
19.
19. J. Boon and S. Yip, Molecular Hydrodynamics (McGraw Hill, New York, 1980).
20.
20. G. Kneller, J. Chem. Phys. 134, 224106 (2011).
http://dx.doi.org/10.1063/1.3598483
21.
21. NIST Handbook of Mathematical Functions, edited by F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge University Press, Cambridge, England, 2010).
22.
22. K. Oldham and J. Spanier, The Fractional Calculus (Academic, New York, 1974).
23.
23. E. Falck, T. Róg, M. Karttunen, and I. Vattulainen, J. Am. Chem. Soc. 130, 44 (2008).
http://dx.doi.org/10.1021/ja7103558
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/14/10.1063/1.3651800
Loading
/content/aip/journal/jcp/135/14/10.1063/1.3651800
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/14/10.1063/1.3651800
2011-10-12
2016-09-28

Abstract

This communication presents a molecular dynamics simulation study of a bilayer consisting of 128 dioleoyl-sn-glycero-3-phosphocholine molecules, which focusses on the center-of-mass diffusion of the lipid molecules parallel to the membrane plane. The analysis of the simulation results is performed within the framework of the generalized Langevin equation and leads to a consistent picture of subdiffusion. The mean square displacement of the lipid molecules evolves as ∝ t α, with α between 0.5 and 0.6, and the fractional diffusion coefficient is close to the experimental value for a similar system obtained by fluorescencecorrelation spectroscopy. We show that the long-time tails of the lateral velocity autocorrelation function and the associated memory function agree well with exact results which have been recently derived by asymptotic analysis [G. Kneller, J. Chem. Phys.134, 224106 (2011)10.1063/1.3598483]. In this context, we define characteristic time scales for these two quantities.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/14/1.3651800.html;jsessionid=2B8zoSDyx1_hSVPCq3bB6xz4.x-aip-live-03?itemId=/content/aip/journal/jcp/135/14/10.1063/1.3651800&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/14/10.1063/1.3651800&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/14/10.1063/1.3651800'
Right1,Right2,Right3,