Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/14/10.1063/1.3652756
1.
1. J. P. Kennett, K. G. Cannariato, I. L. Hendy, and R. J. Behl, Science 288, 128 (2000).
http://dx.doi.org/10.1126/science.288.5463.128
2.
2. S. J. Davis, K. Caldeira, and H. D. Matthews, Science 329, 1330 (2010).
http://dx.doi.org/10.1126/science.1188566
3.
3. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd ed. (CRC/Taylor & Francis, Boca Raton, 2008).
4.
4. E. D. Sloan, Nature 426, 353 (2003).
http://dx.doi.org/10.1038/nature02135
5.
5. D. K. Staykova, W. F. Kuhs, A. N. Salamatin, and T. Hansen, J. Phys. Chem. B 107, 10299 (2003).
http://dx.doi.org/10.1021/jp027787v
6.
6. X. Wang, A. J. Schultz, and Y. Halpern, J. Phys. Chem. A 106, 7304 (2002).
http://dx.doi.org/10.1021/jp025550t
7.
7. A. Falenty and W. F. Kuhs, J. Phys. Chem. B 113, 15975 (2009).
http://dx.doi.org/10.1021/jp906859a
8.
8. T. A. Strobel, K. C. Hester, C. A. Koh, A. K. Sum, and E. D. Sloan, Chem. Phys. Lett. 478, 97 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.07.030
9.
9. V. Buch, J. P. Devlin, I. A. Monreal, B. Jagoda-Cwiklik, N. Aytemiz-Uras, and L. Cwiklik, Phys. Chem. Chem. Phys. 11, 10245 (2009).
http://dx.doi.org/10.1039/b911600c
10.
10. J. A. Abbondondola, E. B. Fleischer, and K. C. Janda, J. Phys. Chem. C 113, 4717 (2009).
http://dx.doi.org/10.1021/jp804515h
11.
11. A. Falenty, G. Genov, T. C. Hansen, W. F. Kuhs, and A. N. Salamatin, J. Phys. Chem. C 115, 4022 (2011).
http://dx.doi.org/10.1021/jp1084229
12.
12. T. D. Brown, C. E. Taylor, and M. P. Bernardo, Energies 3, 1154 (2010).
http://dx.doi.org/10.3390/en3061154
13.
13. G. Li, D. Liu, Y. Xie, and Y. Xiao, Energy Fuels 24, 4590 (2010).
http://dx.doi.org/10.1021/ef100417y
14.
14. J. P. Devlin and I. A. Monreal, J. Phys. Chem. A 114, 13129 (2010).
http://dx.doi.org/10.1021/jp110614e
15.
15. J. P. Devlin and I. A. Monreal, Chem. Phys. Lett. 492, 1 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.03.072
16.
16. V. Buch, S. Bauerecker, J. P. Devlin, U. Buck, and J. I. Kazimirski, Int. Rev. Phys. Chem. 23, 375 (2004).
http://dx.doi.org/10.1080/01442350412331316124
17.
17. J. Vatamanu and P. G. Kusalik, J. Am. Chem. Soc. 128, 15588 (2010);
http://dx.doi.org/10.1021/ja066515t
17.S. Liang and P. G. Kusalik, Chem. Phys. Lett. 494, 123 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.05.088
18.
18. W. Hujo, M. Gaus, M. Schultze, T. Kubar, J. Grunenberg, M. Elstner, and S. Bauerecker, J. Phys. Chem. A 115, 6218 (2011).
http://dx.doi.org/10.1021/jp111481q
19.
19. F. Fleyfel and J. P. Devlin, J. Phys. Chem. 95, 3811 (1991).
http://dx.doi.org/10.1021/j100162a068
20.
20. J. Hernandez, N. Uras, and J. P. Devlin, J. Phys. Chem. B 102, 4526 (1998).
http://dx.doi.org/10.1021/jp9811474
21.
21. J. P. Devlin, S. C. Silva, B. Rowland, and V. Buch, “Spectroscopic and simulation study of ice surfaces: bare and with adsorbates,” in Hydrogen Bond Networks, edited by M.-C. Bellissent-Funel and J. C. Dore (Kluwer Academic, The Netherlands, 1994), pp. 373380.
22.
22. S. C. Silva and J. P. Devlin, J. Phys. Chem. 98, 10847 (1994).
http://dx.doi.org/10.1021/j100093a027
23.
23. K. Consani and G. C. Pimental, J. Phys. Chem. 91, 289 (1987).
http://dx.doi.org/10.1021/j100286a011
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/14/10.1063/1.3652756
Loading
/content/aip/journal/jcp/135/14/10.1063/1.3652756
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/14/10.1063/1.3652756
2011-10-11
2016-09-30

Abstract

A simple method has been developed for the measurement of high quality FTIR spectra of aerosols of gas-hydrate nanoparticles. The application of this method enables quantitative observation of gas hydrates that form on subsecond timescales using our all-vapor approach that includes an ether catalyst rather than high pressures to promote hydrate formation. The sampling method is versatile allowing routine studies at temperatures ranging from 120 to 210 K of either a single gas or the competitive uptake of different gas molecules in small cages of the hydrates. The present study emphasizes hydrate aerosols formed by pulsing vapor mixtures into a cold chamber held at 160 or 180 K. We emphasize aerosol spectra from 6 scans recorded an average of 8 s after “instantaneous” hydrate formation as well as of the gas hydrates as they evolve with time. Quantitative aerosol data are reported and analyzed for single small-cage guests and for mixed hydrates of CO2, CH4, C2H2, N2O, N2, and air. The approach, combined with the instant formation of gas hydrates from vapors only, offers promise with respect to optimization of methods for the formation and control of gas hydrates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/14/1.3652756.html;jsessionid=44aZN_AdaTjWAotUuTUrT53D.x-aip-live-06?itemId=/content/aip/journal/jcp/135/14/10.1063/1.3652756&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/14/10.1063/1.3652756&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/14/10.1063/1.3652756'
Right1,Right2,Right3,