1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Lateral phase separation of mixed polymer brushes physisorbed on planar substrates
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/14/10.1063/1.3653937
1.
1. A. Halperin, M. Tirrell, and T. P. Lodge, Adv. Polym. Sci. 100, 31 (1992).
http://dx.doi.org/10.1007/BFb0051632
2.
2. M. Muller, Phys. Rev. E 65, 030802 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.030802
3.
3. S. Minko, M. Muller, D. Usov, A. Scholl, C. Froeck, and M. Stamm, Phys. Rev. Lett. 88, 035502 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.035502
4.
4. G. L. He, H. Merlitz, J. U. Sommer, and C. X. Wu, Macromolecules 42, 7194 (2009).
http://dx.doi.org/10.1021/ma901093u
5.
5. I. Szleifer, Biophys. J. 72, 595 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78698-3
6.
6. N. Ayres, Polym. Chem. 1, 769 (2010).
http://dx.doi.org/10.1039/b9py00246d
7.
7. B. Zhao and W. J. Brittain, Prog. Polym. Sci. 25, 677 (2000).
http://dx.doi.org/10.1016/S0079-6700(00)00012-5
8.
8. B. Zhao and L. Zhu, Macromolecules 42, 9369 (2009).
http://dx.doi.org/10.1021/ma902042x
9.
9. M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, Nature Mater. 9, 101 (2010).
http://dx.doi.org/10.1038/nmat2614
10.
10. S. Alexander, J. Phys (Paris) 38, 977 (1977).
http://dx.doi.org/10.1051/jphys:01977003808097700
11.
11. P. G. de Gennes, Macromolecules 13, 1069 (1980).
http://dx.doi.org/10.1021/ma60077a009
12.
12. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).
13.
13. S. T. Milner, T. A. Witten, and M. E. Cates, Macromolecules 21, 2610 (1988).
http://dx.doi.org/10.1021/ma00186a051
14.
14. S. F. Edwards, Proc. Phys. Soc. London 85, 613 (1965).
http://dx.doi.org/10.1088/0370-1328/85/4/301
15.
15. G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, International Series of Monographs on Physics (Clarendon Press; Oxford University Press, Oxford, New York, 2006).
16.
16. M. A. Carignano and I. Szleifer, Macromolecules 28, 3197 (1995).
http://dx.doi.org/10.1021/ma00113a023
17.
17. M. Muller, K. C. Daoulas, J. J. de Pablo, P. F. Nealey, and G. D. Smith, Soft Matter 2, 573 (2006).
http://dx.doi.org/10.1039/b602610a
18.
18. J. F. Wang and M. Muller, J. Phys. Chem. B 113, 11384 (2009).
http://dx.doi.org/10.1021/jp903161j
19.
19. M. A. Carignano and I. Szleifer, J. Chem. Phys. 98, 5006 (1993).
http://dx.doi.org/10.1063/1.464954
20.
20. D. I. Dimitrov, A. Milchev, and K. Binder, J. Chem. Phys. 127, 084905 (2007).
http://dx.doi.org/10.1063/1.2768525
21.
21. P. Y. Lai and K. Binder, J. Chem. Phys. 97, 586 (1992).
http://dx.doi.org/10.1063/1.463554
22.
22. P. Y. Lai, J. Chem. Phys. 100, 3351 (1994).
http://dx.doi.org/10.1063/1.466427
23.
23. P. J. Flory, Principles of Polymer Chemistry, The George Fisher Baker Non-resident Lectureship in Chemistry at Cornell University (Cornell University Press, Ithaca, 1953).
24.
24. S. Komura and S. A. Safran, Eur. Phys. J. E 5, 337 (2001).
http://dx.doi.org/10.1007/s101890170065
25.
25.Changing from a hexagonal to square lattice did not affect the phases observed in simulations, though the values of χ and κ corresponding to different phases were shifted due to the difference in the number of near-neighbors per lattice site. Simulation results were also not affected by an increase in system size.
26.
26. D. A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, California, 2000).
27.
27. I. K. Voets and F. A. M. Leermakers, Phys. Rev. E 78, 061801 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.061801
28.
28. J. F. Marko and T. A. Witten, Phys. Rev. Lett. 66, 1541 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1541
29.
29. M. Daoud and J. P. Cotton, J. Phys (Paris) 43, 531 (1982).
http://dx.doi.org/10.1051/jphys:01982004303053100
30.
30. P. K. Ghorai and S. C. Glotzer, J. Phys. Chem. C 114, 19182 (2010).
http://dx.doi.org/10.1021/jp105013k
31.
31. C. Singh, P. K. Ghorai, M. A. Horsch, A. M. Jackson, R. G. Larson, F. Stellacci, and S. C. Glotzer, Phys. Rev. Lett. 99, 226106 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.226106
32.
32. A. Santos, C. Singh, and S. C. Glotzer, Phys. Rev. E 81, 011113 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.011113
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/14/10.1063/1.3653937
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Illustration of the mixed brush system consisting of short polymer chains with N S segments each and long polymer chains with N L segments. Both the long (gray) and short (blue) polymers are drawn as a series of blobs consistent with the Alexander-de Gennes approach. The polymers are tethered to the surface with a fixed grafting length ξ0 that sets the lateral length scale. The radius of blobs in the upper brush layer, R, depends on the local volume fraction of long polymers ϕ around each chain. The height of each layer is denoted as h 1 and h 2, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

Phase diagram for a phase fraction f = 0.50 of the mixed brush system as a function of κ, the dimensionless constant for the blob interaction, and χ, the Flory-Huggins interaction parameter. Thick black lines mark phase transitions. Three morphologies are observed—mixed (M), phase separated (PS), and striped (S). Simulation snapshots of the corresponding phases are included with long polymers drawn in gray and short in blue. Note that two simulation snapshots of the striped phase are shown, illustrating the well-aligned stripes observed for high values of χ.

Image of FIG. 3.

Click to view

FIG. 3.

Phase diagram for χ = 1.5 of the mixed brush system as a function of κ and f. Thick black lines mark phase transitions. Mixed (M), phase separated (PS), striped (S), and dimple (D) phases are observed. Simulation snapshots corresponding to the value of κ indicated by the dotted line are shown, illustrating the different observed phases as f is increased. Long polymer chains are drawn as gray and short chains are drawn as blue.

Loading

Article metrics loading...

/content/aip/journal/jcp/135/14/10.1063/1.3653937
2011-10-13
2014-04-24

Abstract

Here, we present a new method to model lateral phase separation in mixed polymer brushes physisorbed to a planar surface with mobile grafting points. The model is based on a local mean field theory that combines a Flory-Huggins approximation for interaction enthalpies with an Alexander-de Gennes brush entropy contribution. Using Monte Carlo sampling, the application of these two interactions to a lattice model yields a range of phase behavior consistent with previous theoretical and experimental work. This model will be useful for predicting mixed polymer brush morphologies on planar surfaces and in principle can be extended to other geometries (e.g., spheres) and polymer systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/14/1.3653937.html;jsessionid=3fwef28ktl4q.x-aip-live-03?itemId=/content/aip/journal/jcp/135/14/10.1063/1.3653937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Lateral phase separation of mixed polymer brushes physisorbed on planar substrates
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/14/10.1063/1.3653937
10.1063/1.3653937
SEARCH_EXPAND_ITEM