Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/15/10.1063/1.3643720
1.
1. S. Scheiner and C. W. Kern, J. Am. Chem. Soc. 101, 4081 (1979).
http://dx.doi.org/10.1021/ja00509a012
2.
2. P. O. Löwdin, Adv. Quantum Chem. 2, 213 (1965).
http://dx.doi.org/10.1016/S0065-3276(08)60076-3
3.
3. J. Catalan and M. Kasha, J. Phys. Chem. A 104, 10812 (2000).
http://dx.doi.org/10.1021/jp0028397
4.
4. F. Madeja and M. Havenith, J. Chem. Phys. 117, 7162 (2002).
http://dx.doi.org/10.1063/1.1507581
5.
5. A. Gutberlet, G. W. Schwaab, and M. Havenith, Chem. Phys. 343, 158 (2008).
http://dx.doi.org/10.1016/j.chemphys.2007.08.025
6.
6. O. Birer and M. Havenith, Annu. Rev. Phys. Chem. 60, 263 (2009).
http://dx.doi.org/10.1146/annurev.physchem.040808.090431
7.
7. M. C. D. Tayler, B. Ouyang, and B. J. Howard, J. Chem. Phys. 134, 054316 (2011).
http://dx.doi.org/10.1063/1.3528688
8.
8. A. M. Daly, P. R. Bunker, and S. G. Kukolich, J. Chem. Phys. 132(20), 2011011 (2010);
http://dx.doi.org/10.1063/1.3443508
8.A. M. Daly, P. R. Bunker, and S. G. Kukolich, J. Chem. Phys. 133(7), 0799031 (2010).
http://dx.doi.org/10.1063/1.3472345
9.
9. B. S. Jursic, J. Mol. Struct. 417, 99 (1997).
http://dx.doi.org/10.1016/S0166-1280(97)00052-3
10.
10. N. Shida, P. F. Barbara, and J. Almlöf, J. Chem. Phys. 94, 3633 (1991).
http://dx.doi.org/10.1063/1.459734
11.
11. W. Siebrand, Z. Smedarchina, and A. F. Fernandez-Ramos, Chem. Phys. Lett. 459, 22 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.04.131
12.
12. H. M. Pickett, J. Chem. Phys. 56, 1715 (1972).
http://dx.doi.org/10.1063/1.1677430
13.
13. H. M. Pickett, J. Mol. Spectrosc. 148, 371 (1991); see also (http://spec.jpl.nasa.gov/ftp/pub/calpgm/spinv.html).
http://dx.doi.org/10.1016/0022-2852(91)90393-O
14.
14. S. L. Baughcum, Z. Smith, E. B. Wilson, and R. W. Durest, J. Am. Chem. Soc. 106, 2260 (1984).
http://dx.doi.org/10.1021/ja00320a007
15.
15. K. Tanaka, H. Honjo, T Tanaka, H. Kohguchi, Y. Ohshima, and Y. Endo, J. Chem. Phys. 110, 1969 (1999).
http://dx.doi.org/10.1063/1.477863
16.
16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 03, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
17.
17. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
18.
18. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.16533
19.
19. A. D. Boese and N. C. Handy, J. Chem. Phys. 114, 5497 (2001).
http://dx.doi.org/10.1063/1.1347371
20.
20. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
21.
21. B. S. Tackett, C. Karunatilaka, A. Daly, and S. G. Kukolich, Organometallics 26, 2070 (2007).
http://dx.doi.org/10.1021/om061027f
22.
22. S. G. Kukolich and L. C. Sarkozy, Rev. Sci. Instrum. 82, 094103 (2011).
http://dx.doi.org/10.1063/1.3627489
23.
23. T. J. Balle and W. H. Flygare, Rev. Sci. Instrum. 52, 33 (1981).
http://dx.doi.org/10.1063/1.1136443
24.
24. R. D. Suenram, J. U. Grabow, A. Zupan, and I. Leonov, Rev. Sci. Instrum. 70, 2127 (1999).
http://dx.doi.org/10.1063/1.1149725
25.
25. M. Nakajima, Y. Sumiyoshi, and Y. Endo, Rev. Sci. Instrum. 73, 165 (2002).
http://dx.doi.org/10.1063/1.1426230
26.
26. G. G. Brown, B. C. Dian, K. O. Douglass, S. M Geyer, S. T Shipman, and B. H. Pate, Rev. Sci. Instrum. 79, 0531031 (2008).
http://dx.doi.org/10.1063/1.2919120
27.
27. T. Emilsson, H. S. Gutowsky, G. de Oliveira, and C. E. Dykstra, J. Chem. Phys. 112, 1287 (2000).
http://dx.doi.org/10.1063/1.480680
28.
28. A. Bauder, J. Mol. Struct. 408/409, 33 (1997).
http://dx.doi.org/10.1016/S0022-2860(96)09492-6
29.
29. D. G. Lister and J. K. Tyler, Spectrochim. Acta A 28, 1423 (1972).
http://dx.doi.org/10.1016/0584-8539(72)80111-9
30.
30. J. Bellet, A. Deldalle, C. Samson, G. Steenbeckeliers, and R. Wetheimer, J. Mol. Structure 9, 65 (1971).
http://dx.doi.org/10.1016/0022-2860(71)85007-X
31.
31. L. Martinache, W. Kresa, M. Wegener, U. Vonmont, and A. Bauder, Chem. Phys. 148, 129 (1990).
http://dx.doi.org/10.1016/0301-0104(90)89013-G
33.
33. K. Tanaka, T. Tanaka, and I. Suzuki, J. Chem. Phys. 82, 2835 (1985).
http://dx.doi.org/10.1063/1.448285
34.
34. P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC Research Press, Ottawa, 1998).
35.
35. J. M. Hollas, High Resolution Spectroscopy (Wiley, New York, 1998).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/15/10.1063/1.3643720
Loading
/content/aip/journal/jcp/135/15/10.1063/1.3643720
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/15/10.1063/1.3643720
2011-10-19
2016-06-01

Abstract

Microwave spectra of the propiolic acid–formic acid doubly hydrogen bonded complex were measured in the 1 GHz to 21 GHz range using four different Fourier transform spectrometers. Rotational spectra for seven isotopologues were obtained. For the parent isotopologue, a total of 138 a-dipole transitions and 28 b-dipole transitions were measured for which the a-dipole transitions exhibited splittings of a few MHz into pairs of lines and the b-type dipole transitions were split by ∼580 MHz. The transitions assigned to this complex were fit to obtain rotational and distortion constants for both tunneling levels: A0+ = 6005.289(8), B0+ = 930.553(8), C0+ = 803.9948(6) MHz, Δ0+ J = 0.075(1), Δ0+ JK = 0.71(1), and δ0+ j = −0.010(1) kHz and A0− = 6005.275(8), B0− = 930.546(8), C0− = 803.9907(5) MHz, Δ0− J = 0.076(1), Δ0− JK = 0.70(2), and δ0− j = −0.008(1) kHz. Double resonance experiments were used on some transitions to verify assignments and to obtain splittings for cases when the b-dipole transitions were difficult to measure. The experimental difference in energy between the two tunneling states is 291.428(5) MHz for proton-proton exchange and 3.35(2) MHz for the deuterium-deuterium exchange. The vibration-rotation coupling constant between the two levels, Fab, is 120.7(2) MHz for the proton-proton exchange. With one deuterium atom substituted in either of the hydrogen-bonding protons, the tunneling splittings were not observed for a-dipole transitions, supporting the assignment of the splitting to the concerted protontunneling motion. The spectra were obtained using three Flygare-Balle type spectrometers and one chirped-pulse machine at the University of Virginia. Rotational constants and centrifugal distortion constants were obtained for HCOOH···HOOCCCH, H13COOH···HOOCCCH, HCOOD···HOOCCCH, HCOOH···DOOCCCH, HCOOD···DOOCCCH, DCOOH···HOOCCCH, and DCOOD···HOOCCCH. High-level ab initio calculations provided initial rotational constants for the complex, structural parameters, and some details of the protontunneling potential energy surface. A least squares fit to the isotopic data reveals a planar structure that is slightly asymmetric in the OH distances. The formic OH···O propiolic hydrogen bond length is 1.8 Å and the propiolic OH···O formic hydrogen bond length is 1.6 Å, for the equilibrium configuration. The magnitude of the dipole moment was experimentally determined to be 1.95(3) × 10−30 C m (0.584(8) D) for the 0+ states and 1.92(5) × 10−30 C m (0.576(14) D) for the 0 states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/15/1.3643720.html;jsessionid=FD55FOJTf7fuyf9WqrUctf-r.x-aip-live-03?itemId=/content/aip/journal/jcp/135/15/10.1063/1.3643720&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/15/10.1063/1.3643720&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/15/10.1063/1.3643720'
Right1,Right2,Right3,