Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/15/10.1063/1.3655564
1.
1. J. J. Lin, J. Zhou, W. Shiu, and K. Liu, Science 300, 966 (2003).
http://dx.doi.org/10.1126/science.1083672
2.
2. B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010).
http://dx.doi.org/10.1021/jp102532m
3.
3. A. K. Mollner, B. E. Casterline, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 113, 10174 (2009).
http://dx.doi.org/10.1021/jp904566w
4.
4. B. E. Rocher-Casterline, L. C. Ch'ng, A. K. Mollner, and H. Reisler, J. Chem. Phys. 134, 211101 (2011).
http://dx.doi.org/10.1063/1.3598339
5.
5. A. S. Case, C. G. Heid, S. H. Kable, and F. F. Crim, J. Chem. Phys. 135, 084312 (2011).
http://dx.doi.org/10.1063/1.3625634
6.
6. A. Shank, Y. Wang, A. Kaledin, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 144314 (2009).
http://dx.doi.org/10.1063/1.3112403
7.
7. H. Reisler, personal communication (2011).
8.
8. W. Cencek, K. Szalewicz, C. Leforestier, R. van Harrevelt, and A. van der Avoird, Phys. Chem. Chem. Phys. 10, 4716 (2008).
http://dx.doi.org/10.1039/b809435g
9.
9. G. Czakó, A. L. Kaledin, and J. M. Bowman, Chem. Phys. Lett. 500, 217 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.10.015
10.
10. G. Czakó and J. M. Bowman, J. Chem. Phys. 131, 244302 (2009).
http://dx.doi.org/10.1063/1.3276633
11.
11. G. Czakó, A. L. Kaledin, and J. M. Bowman, J. Chem. Phys. 132, 164103 (2010).
http://dx.doi.org/10.1063/1.3417999
12.
12. L. Bonnet and J. C. Rayez, Chem. Phys. Lett. 277, 183 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00881-6
13.
13. L. Bonnet and J. C. Rayez, Chem. Phys. Lett. 397, 106 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.08.068
14.
14. L. Bonnet and J. Espinosa-García, J. Chem. Phys. 133, 164108 (2010).
http://dx.doi.org/10.1063/1.3481781
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/15/10.1063/1.3655564
Loading
/content/aip/journal/jcp/135/15/10.1063/1.3655564
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/15/10.1063/1.3655564
2011-10-18
2016-12-05

Abstract

Stimulated by recent experiments [B. E. Rocher-Casterline, L. C. Ch'ng, A. K. Mollner, and H. Reisler, J. Chem. Phys.134, 211101 (2011)], we report quasiclassical trajectory calculations of the dissociation dynamics of the water dimer, (H2O)2 (and also (D2O)2) using a full-dimensional ab initiopotential energy surface. The dissociation is initiated by exciting the H-bonded OH(OD)-stretch, as done experimentally for (H2O)2. Normal mode analysis of the fragment pairs is done and the correlated vibrational populations are obtained by (a) standard histogram binning (HB), (b) harmonic normal-mode energy-based Gaussian binning (GB), and (c) a modified version of (b) using accurate vibrational energies obtained in the Cartesian space. We show that HB allows opening quantum mechanically closed states, whereas GB, especially via (c), gives physically correct results. Dissociation of both (H2O)2 and (D2O)2 mainly produces either fragment in the bending excited (010) state. The H2O(J) and D2O(J) rotational distributions are similar, peaking at J = 3–5. The computations do not show significant difference between the ro-vibrational distributions of the donor and acceptor fragments. Diffusion Monte Carlo computations are performed for (D2O)2 providing an accurate zero-point energy of 7247 cm−1, and thus, a benchmark D 0 of 1244 ± 5 cm−1.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/15/1.3655564.html;jsessionid=T6NahjfAUTxZI0AGLI76YWrs.x-aip-live-03?itemId=/content/aip/journal/jcp/135/15/10.1063/1.3655564&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/15/10.1063/1.3655564&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/15/10.1063/1.3655564'
Right1,Right2,Right3,