Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Baer, E. Livshits, and U. Salzner, Annual Review of Physical Chemistry (Annual Reviews, Palo Alto, CA, 2010), Vol. 61, p. 85.
2. S. Refaely-Abramson, R. Baer, and L. Kronik, Phys. Rev. B 84, 075144 (2011).
3. T. Stein, H. Eisenberg, L. Kronik, and R. Baer, Phys. Rev. Lett. 105, 266802 (2010).
4. D. Jacquemin, E. A. Perpete, G. Scalmani, M. J. Frisch, R. Kobayashi, and C. Adamo, J. Chem. Phys. 126, 144105 (2007).
5. H. Sekino, Y. Maeda, M. Kamiya, and K. Hirao, J. Chem. Phys. 126, 014107 (2007).
6. C. A. Jimenez-Hoyos, B. G. Janesko, and G. E. Scuseria, Phys. Chem. Chem. Phys. 10, 6621 (2008).
7. D. Jacquemin, E. A. Perpete, I. Ciofini, and C. Adamo, Theor. Chem. Acc. 128, 127 (2011).
8. T. Stein, L. Kronik, and R. Baer, J. Am. Chem. Soc. 131, 2818 (2009).
9. T. Stein, L. Kronik, and R. Baer, J. Chem. Phys. 131, 244119 (2009).
10. J. D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008).
11. T. Körzdörfer, C. Sutton, J. S. Sears, and J. L. Bredas (unpublished).
12. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
13. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).
14. M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
15. M. E. Casida, F. Gutierrez, J. Guan, F. X. Gadea, D. Salahub, and J. P. Daudey, J. Chem. Phys. 113, 7062 (2000).
16. Y. L. Wang and G. S. Wu, Int. J. Quantum Chem. 108, 430 (2008).
17. C. P. Hsu, S. Hirata, and M. Head-Gordon, J. Phys. Chem. A 105, 451 (2001).
18. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
19. W. H. Adams, Phys. Rev. 127, 1650 (1962).
20. J. Cizek and J. Paldus, J. Chem. Phys. 47, 3976 (1967).
21. R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. 104, 9047 (1996).
22. O. B. Lutnaes, T. Helgaker, and M. Jaszunski, Mol. Phys. 108, 2579 (2010).
23. N. Kuritz, T. Stein, R. Baer, and L. Kronik, J. Chem. Theory Comput. 7, 2408 (2011).
24. R. M. Richard and J. M. Herbert, J. Chem. Theory Comput. 7, 1296 (2011).
25. B. M. Wong and T. H. Hsieh, J. Chem. Theory Comput. 6, 3704 (2010).
26. H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz, et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see
27. Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. Hung Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006).
28. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
29. T. Tsuneda, T. Suzumura, and K. Hirao, J. Chem. Phys. 110, 10664 (1999).
30. O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006).
31. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008)
32. E. Livshits and R. Baer, Phys. Chem. Chem. Phys. 9, 2932 (2007).
33.See supplementary material at for the complete results. [Supplementary Material]
34. C. R. Zhang, J. S. Sears, V. Coropceanu, and J. L. Bredas (unpublished).

Data & Media loading...


Article metrics loading...



Long-range corrected hybrids represent an increasingly popular class of functionals for density functional theory(DFT) that have proven to be very successful for a wide range of chemical applications. In this Communication, we examine the performance of these functionals for time-dependent (TD)DFT descriptions of triplet excited states. Our results reveal that the triplet energies are particularly sensitive to the range-separation parameter; this sensitivity can be traced back to triplet instabilities in the ground state coming from the large effective amounts of Hartree-Fock exchange included in these functionals. As such, the use of standard long-range corrected functionals for the description of triplet states at the TDDFT level is not recommended.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd