1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Orbital instabilities and triplet states from time-dependent density functional theory and long-range corrected functionals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/15/10.1063/1.3656734
1.
1. R. Baer, E. Livshits, and U. Salzner, Annual Review of Physical Chemistry (Annual Reviews, Palo Alto, CA, 2010), Vol. 61, p. 85.
2.
2. S. Refaely-Abramson, R. Baer, and L. Kronik, Phys. Rev. B 84, 075144 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075144
3.
3. T. Stein, H. Eisenberg, L. Kronik, and R. Baer, Phys. Rev. Lett. 105, 266802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.266802
4.
4. D. Jacquemin, E. A. Perpete, G. Scalmani, M. J. Frisch, R. Kobayashi, and C. Adamo, J. Chem. Phys. 126, 144105 (2007).
http://dx.doi.org/10.1063/1.2715573
5.
5. H. Sekino, Y. Maeda, M. Kamiya, and K. Hirao, J. Chem. Phys. 126, 014107 (2007).
http://dx.doi.org/10.1063/1.2428291
6.
6. C. A. Jimenez-Hoyos, B. G. Janesko, and G. E. Scuseria, Phys. Chem. Chem. Phys. 10, 6621 (2008).
http://dx.doi.org/10.1039/b810877c
7.
7. D. Jacquemin, E. A. Perpete, I. Ciofini, and C. Adamo, Theor. Chem. Acc. 128, 127 (2011).
http://dx.doi.org/10.1007/s00214-010-0783-x
8.
8. T. Stein, L. Kronik, and R. Baer, J. Am. Chem. Soc. 131, 2818 (2009).
http://dx.doi.org/10.1021/ja8087482
9.
9. T. Stein, L. Kronik, and R. Baer, J. Chem. Phys. 131, 244119 (2009).
http://dx.doi.org/10.1063/1.3269029
10.
10. J. D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008).
http://dx.doi.org/10.1063/1.2834918
11.
11. T. Körzdörfer, C. Sutton, J. S. Sears, and J. L. Bredas (unpublished).
12.
12. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
13.
13. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00440-X
14.
14. M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1212
15.
15. M. E. Casida, F. Gutierrez, J. Guan, F. X. Gadea, D. Salahub, and J. P. Daudey, J. Chem. Phys. 113, 7062 (2000).
http://dx.doi.org/10.1063/1.1313558
16.
16. Y. L. Wang and G. S. Wu, Int. J. Quantum Chem. 108, 430 (2008).
http://dx.doi.org/10.1002/qua.21510
17.
17. C. P. Hsu, S. Hirata, and M. Head-Gordon, J. Phys. Chem. A 105, 451 (2001).
http://dx.doi.org/10.1021/jp0024367
18.
18. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01149-5
19.
19. W. H. Adams, Phys. Rev. 127, 1650 (1962).
http://dx.doi.org/10.1103/PhysRev.127.1650
20.
20. J. Cizek and J. Paldus, J. Chem. Phys. 47, 3976 (1967).
http://dx.doi.org/10.1063/1.1701562
21.
21. R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. 104, 9047 (1996).
http://dx.doi.org/10.1063/1.471637
22.
22. O. B. Lutnaes, T. Helgaker, and M. Jaszunski, Mol. Phys. 108, 2579 (2010).
http://dx.doi.org/10.1080/00268976.2010.513344
23.
23. N. Kuritz, T. Stein, R. Baer, and L. Kronik, J. Chem. Theory Comput. 7, 2408 (2011).
http://dx.doi.org/10.1021/ct2002804
24.
24. R. M. Richard and J. M. Herbert, J. Chem. Theory Comput. 7, 1296 (2011).
http://dx.doi.org/10.1021/ct100607w
25.
25. B. M. Wong and T. H. Hsieh, J. Chem. Theory Comput. 6, 3704 (2010).
http://dx.doi.org/10.1021/ct100529s
26.
26. H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz, et al., MOLPRO, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
27.
27. Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. Hung Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Z. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006).
http://dx.doi.org/10.1039/b517914a
28.
28. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
29.
29. T. Tsuneda, T. Suzumura, and K. Hirao, J. Chem. Phys. 110, 10664 (1999).
http://dx.doi.org/10.1063/1.479012
30.
30. O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006).
http://dx.doi.org/10.1063/1.2409292
31.
31. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008)
http://dx.doi.org/10.1039/b810189b
32.
32. E. Livshits and R. Baer, Phys. Chem. Chem. Phys. 9, 2932 (2007).
http://dx.doi.org/10.1039/b617919c
33.
33.See supplementary material at http://dx.doi.org/10.1063/1.3656734 for the complete results. [Supplementary Material]
34.
34. C. R. Zhang, J. S. Sears, V. Coropceanu, and J. L. Bredas (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/15/10.1063/1.3656734
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Lowest RKS-UKS orbital Hessian eigenvalue from the BNL functional as a function of the range-separation parameter for the linear acenes (see chemical structure in inset). The vertical dashed line at ω = 0.5 bohr−1 indicates the values obtained with BNL using the default range-separation parameter. The points individually highlighted on each of the curves are those obtained with the IP-optimized ω.

Image of FIG. 2.

Click to view

FIG. 2.

TDDFT and TDA-TDDFT (and ΔSCF T 1) excitation energies for anthracene in a cc-pVTZ basis using the BNL functional as a function of the range-separation parameter.

Image of FIG. 3.

Click to view

FIG. 3.

(Upper panel) Lowest RKS-UKS Hessian eigenvalue (λ) for the linear acenes as a function of the number of fused rings (n). (Lower panel) Ratio of the full TDDFT triplet energy () to the Tamm-Dancoff triplet energy () for the same functionals.

Loading

Article metrics loading...

/content/aip/journal/jcp/135/15/10.1063/1.3656734
2011-10-21
2014-04-18

Abstract

Long-range corrected hybrids represent an increasingly popular class of functionals for density functional theory(DFT) that have proven to be very successful for a wide range of chemical applications. In this Communication, we examine the performance of these functionals for time-dependent (TD)DFT descriptions of triplet excited states. Our results reveal that the triplet energies are particularly sensitive to the range-separation parameter; this sensitivity can be traced back to triplet instabilities in the ground state coming from the large effective amounts of Hartree-Fock exchange included in these functionals. As such, the use of standard long-range corrected functionals for the description of triplet states at the TDDFT level is not recommended.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/15/1.3656734.html;jsessionid=1sdv1ku1no3z7.x-aip-live-02?itemId=/content/aip/journal/jcp/135/15/10.1063/1.3656734&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Orbital instabilities and triplet states from time-dependent density functional theory and long-range corrected functionals
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/15/10.1063/1.3656734
10.1063/1.3656734
SEARCH_EXPAND_ITEM