1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Standard surface hopping predicts incorrect scaling for Marcus’ golden-rule rate: The decoherence problem cannot be ignored
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/19/10.1063/1.3663870
1.
1. G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.578
2.
2. M. Ben-Nun, J. Quenneville, and T. J. Martínez, J. Phys. Chem. A 104(22), 51615175 (2000).
http://dx.doi.org/10.1021/jp994174i
3.
3. W. H. Miller, J. Phys. Chem. A 113, 1405 (2009).
http://dx.doi.org/10.1021/jp809907p
4.
4. J. C. Tully, J. Chem. Phys. 93(2), 1061 (1990).
http://dx.doi.org/10.1063/1.459170
5.
5. G. A. Jones, B. K. Carpenter, and M. N. Paddon-Row, J. Am. Chem. Soc. 120(22), 5499 (1998).
http://dx.doi.org/10.1021/ja9737533
6.
6. A. Hazra, A. V. Soudackov, and S. Hammes-Schiffer, J. Phys. Chem. B 114, 12319 (2010).
http://dx.doi.org/10.1021/jp1051547
7.
7. D. Nachtigallova, A. J.A. Aquino, J. J. Szymczak, M. Barbatti, P. Hobza, and H. Lischka, J. Phys. Chem. A 115, 5247 (2011).
http://dx.doi.org/10.1021/jp201327w
8.
8. P. V. Parandekar and J. C. Tully, J. Chem. Phys. 122, 094102 (2005).
http://dx.doi.org/10.1063/1.1856460
9.
9. J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129, 044104 (2008).
http://dx.doi.org/10.1063/1.2955564
10.
10. M. S. Topaler, T. C. Allison, D. W. Schwenke, and D. G. Truhlar, J. Phys. Chem. A 102(10), 1666 (1998).
http://dx.doi.org/10.1021/jp9731922
11.
11. M. D. Hack, A. M. Wensmann, D. G. Truhlar, M. Ben-Nun, and T. J. Martínez, J. Chem. Phys. 115, 1172 (2001).
http://dx.doi.org/10.1063/1.1377030
12.
12. U. Müller and G. Stock, J. Chem. Phys. 107, 6230 (1997).
http://dx.doi.org/10.1063/1.474288
13.
13. G. Granucci and M. Persico, J. Chem. Phys. 126, 134114 (2007).
http://dx.doi.org/10.1063/1.2715585
14.
14. J. Y. Fang and S. Hammes-Schiffer, J. Phys. Chem. A 103, 9399 (1999).
http://dx.doi.org/10.1021/jp991602b
15.
15. J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 024105 (2011).
http://dx.doi.org/10.1063/1.3506779
16.
16. J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 244114 (2011).
http://dx.doi.org/10.1063/1.3603448
17.
17. R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
http://dx.doi.org/10.1063/1.1742723
18.
18. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P.A. Fisher, A. I. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
http://dx.doi.org/10.1103/RevModPhys.59.1
19.
19. D. E. Makarov and N. Makri, Phys. Rev. A 48, 3626 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.3626
20.
20. D. Mac Kernan, G. Ciccotti, and R. Kapral, J. Chem. Phys. 116, 2346 (2002).
http://dx.doi.org/10.1063/1.1433502
21.
21. M. Ben-Nun and T. J. Martínez, Isr. J. Chem. 47, 75 (2007).
http://dx.doi.org/10.1560/IJC.47.1.75
22.
22. A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, Oxford, 2006).
23.
23. F. Webster, P. J. Rossky, and R. A. Friesner, Comput. Phys. Commun. 63, 494 (1991).
http://dx.doi.org/10.1016/0010-4655(91)90272-M
24.
24. F. Webster, E. T. Wang, P. J. Rossky, and R. A. Friesner, J. Chem. Phys. 100, 4835 (1994).
http://dx.doi.org/10.1063/1.467204
25.
25. B. J. Schwartz, E. R. Bittner, O. V. Prezhdo, and P. J. Rossky, J. Chem. Phys. 104, 5942 (1996).
http://dx.doi.org/10.1063/1.471326
26.
26. K. F. Wong and P. J. Rossky, J. Chem. Phys. 116, 8418 (2002).
http://dx.doi.org/10.1063/1.1468886
27.
27. K. F. Wong and P. J. Rossky, J. Chem. Phys. 116, 8429 (2002).
http://dx.doi.org/10.1063/1.1468887
28.
28. O. V. Prezhdo and P. J. Rossky, J. Chem. Phys. 107, 825 (1997).
http://dx.doi.org/10.1063/1.474382
29.
29. O. V. Prezhdo, J. Chem. Phys. 111, 8366 (1999).
http://dx.doi.org/10.1063/1.480178
30.
30. M. J. Bedard-Hearn, R. E. Larsen, and B. J. Schwartz, J. Chem. Phys. 123, 234106 (2005).
http://dx.doi.org/10.1063/1.2131056
31.
31. R. E. Larsen, M. J. Bedard-Hearn, and B. J. Schwartz, J. Phys. Chem. B 110, 20055 (2006).
http://dx.doi.org/10.1021/jp0629745
32.
32. Y. L. Volobuev, M. D. Hack, M. S. Topaler, and D. G. Truhlar, J. Chem. Phys. 112, 9716 (2000).
http://dx.doi.org/10.1063/1.481609
33.
33. M. D. Hack and D. G. Truhlar, J. Chem. Phys. 114, 2894 (2001).
http://dx.doi.org/10.1063/1.1342224
34.
34. A. W. Jasper, M. D. Hack, and D. G. Truhlar, J. Chem. Phys. 115, 1804 (2001).
http://dx.doi.org/10.1063/1.1377891
35.
35. C. Zhu, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. 120, 5543 (2004).
http://dx.doi.org/10.1063/1.1648306
36.
36. C. Zhu, S. Nangia, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. 121, 7658 (2004).
http://dx.doi.org/10.1063/1.1793991
37.
37. A. W. Jasper and D. G. Truhlar, J. Chem. Phys. 123, 064103 (2005).
http://dx.doi.org/10.1063/1.1995695
38.
38. J. Y. Fang and S. Hammes-Schiffer, J. Chem. Phys. 110, 11166 (1999).
http://dx.doi.org/10.1063/1.479058
39.
39. N. Shenvi, J. E. Subotnik, and W. Yang, J. Chem. Phys. 134, 144102 (2011).
http://dx.doi.org/10.1063/1.3575588
40.
40. J. C. Tully, G. H. Gilmer, and M. Shugard, J. Chem. Phys. 71(4), 1630 (1979).
http://dx.doi.org/10.1063/1.438490
41.
41. D. Beeman, J. Comput. Phys. 20, 130 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90059-0
42.
42. A. R. Menzeleev, N. Ananth, and T. F. Milller III, J. Chem. Phys. 135, 074106 (2011).
http://dx.doi.org/10.1063/1.3624766
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/19/10.1063/1.3663870
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Sample of the ensemble averaged population data as a function of time and exponential fit, 〈pop(t)〉 = a exp (−kt) + b.

Image of FIG. 2.

Click to view

FIG. 2.

Rates for various values of friction coefficient γ calculated using standard FSSH. Note that as γ is decreased from the over-damped limit the rates increase and level off. This γ regime gives the standard transition state theory rates. As γ is decreased further the rates decline again reaching the under-damped limit. V = 5 × 10−5.

Image of FIG. 3.

Click to view

FIG. 3.

Log-log (base e) plot of the rate k as a function of diabatic coupling V for ε0 = 0.015 in the normal Marcus regime. A plot for ε0 = 0.033 in the inverted regime is nearly identical. The Marcus expression is expected to fail for large V and is only plotted for the regime in which we expect it to hold. γ = 0.0024, slightly in the over-damped regime.

Tables

Generic image for table

Click to view

Table I.

Parameters and ranges used for FSSH (atomic units, ℏ = 1).

Loading

Article metrics loading...

/content/aip/journal/jcp/135/19/10.1063/1.3663870
2011-11-21
2014-04-20

Abstract

We evaluate the accuracy of Tully's surface hopping algorithm for the spin-boson model for the case of a small diabatic coupling parameter (V). We calculate the transition rates between diabatic surfaces, and we compare our results to the expected Marcus rates. We show that standard surface hopping yields an incorrect scaling with diabatic coupling (linear in V), which we demonstrate is due to an incorrect treatment of decoherence. By modifying standard surface hopping to include decoherence events, we recover the correct scaling (∼V 2).

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/19/1.3663870.html;jsessionid=f01p2aiahg15d.x-aip-live-06?itemId=/content/aip/journal/jcp/135/19/10.1063/1.3663870&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Standard surface hopping predicts incorrect scaling for Marcus’ golden-rule rate: The decoherence problem cannot be ignored
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/19/10.1063/1.3663870
10.1063/1.3663870
SEARCH_EXPAND_ITEM