Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/19/10.1063/1.3663870
1.
1. G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.578
2.
2. M. Ben-Nun, J. Quenneville, and T. J. Martínez, J. Phys. Chem. A 104(22), 51615175 (2000).
http://dx.doi.org/10.1021/jp994174i
3.
3. W. H. Miller, J. Phys. Chem. A 113, 1405 (2009).
http://dx.doi.org/10.1021/jp809907p
4.
4. J. C. Tully, J. Chem. Phys. 93(2), 1061 (1990).
http://dx.doi.org/10.1063/1.459170
5.
5. G. A. Jones, B. K. Carpenter, and M. N. Paddon-Row, J. Am. Chem. Soc. 120(22), 5499 (1998).
http://dx.doi.org/10.1021/ja9737533
6.
6. A. Hazra, A. V. Soudackov, and S. Hammes-Schiffer, J. Phys. Chem. B 114, 12319 (2010).
http://dx.doi.org/10.1021/jp1051547
7.
7. D. Nachtigallova, A. J.A. Aquino, J. J. Szymczak, M. Barbatti, P. Hobza, and H. Lischka, J. Phys. Chem. A 115, 5247 (2011).
http://dx.doi.org/10.1021/jp201327w
8.
8. P. V. Parandekar and J. C. Tully, J. Chem. Phys. 122, 094102 (2005).
http://dx.doi.org/10.1063/1.1856460
9.
9. J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129, 044104 (2008).
http://dx.doi.org/10.1063/1.2955564
10.
10. M. S. Topaler, T. C. Allison, D. W. Schwenke, and D. G. Truhlar, J. Phys. Chem. A 102(10), 1666 (1998).
http://dx.doi.org/10.1021/jp9731922
11.
11. M. D. Hack, A. M. Wensmann, D. G. Truhlar, M. Ben-Nun, and T. J. Martínez, J. Chem. Phys. 115, 1172 (2001).
http://dx.doi.org/10.1063/1.1377030
12.
12. U. Müller and G. Stock, J. Chem. Phys. 107, 6230 (1997).
http://dx.doi.org/10.1063/1.474288
13.
13. G. Granucci and M. Persico, J. Chem. Phys. 126, 134114 (2007).
http://dx.doi.org/10.1063/1.2715585
14.
14. J. Y. Fang and S. Hammes-Schiffer, J. Phys. Chem. A 103, 9399 (1999).
http://dx.doi.org/10.1021/jp991602b
15.
15. J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 024105 (2011).
http://dx.doi.org/10.1063/1.3506779
16.
16. J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 244114 (2011).
http://dx.doi.org/10.1063/1.3603448
17.
17. R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
http://dx.doi.org/10.1063/1.1742723
18.
18. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P.A. Fisher, A. I. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
http://dx.doi.org/10.1103/RevModPhys.59.1
19.
19. D. E. Makarov and N. Makri, Phys. Rev. A 48, 3626 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.3626
20.
20. D. Mac Kernan, G. Ciccotti, and R. Kapral, J. Chem. Phys. 116, 2346 (2002).
http://dx.doi.org/10.1063/1.1433502
21.
21. M. Ben-Nun and T. J. Martínez, Isr. J. Chem. 47, 75 (2007).
http://dx.doi.org/10.1560/IJC.47.1.75
22.
22. A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, Oxford, 2006).
23.
23. F. Webster, P. J. Rossky, and R. A. Friesner, Comput. Phys. Commun. 63, 494 (1991).
http://dx.doi.org/10.1016/0010-4655(91)90272-M
24.
24. F. Webster, E. T. Wang, P. J. Rossky, and R. A. Friesner, J. Chem. Phys. 100, 4835 (1994).
http://dx.doi.org/10.1063/1.467204
25.
25. B. J. Schwartz, E. R. Bittner, O. V. Prezhdo, and P. J. Rossky, J. Chem. Phys. 104, 5942 (1996).
http://dx.doi.org/10.1063/1.471326
26.
26. K. F. Wong and P. J. Rossky, J. Chem. Phys. 116, 8418 (2002).
http://dx.doi.org/10.1063/1.1468886
27.
27. K. F. Wong and P. J. Rossky, J. Chem. Phys. 116, 8429 (2002).
http://dx.doi.org/10.1063/1.1468887
28.
28. O. V. Prezhdo and P. J. Rossky, J. Chem. Phys. 107, 825 (1997).
http://dx.doi.org/10.1063/1.474382
29.
29. O. V. Prezhdo, J. Chem. Phys. 111, 8366 (1999).
http://dx.doi.org/10.1063/1.480178
30.
30. M. J. Bedard-Hearn, R. E. Larsen, and B. J. Schwartz, J. Chem. Phys. 123, 234106 (2005).
http://dx.doi.org/10.1063/1.2131056
31.
31. R. E. Larsen, M. J. Bedard-Hearn, and B. J. Schwartz, J. Phys. Chem. B 110, 20055 (2006).
http://dx.doi.org/10.1021/jp0629745
32.
32. Y. L. Volobuev, M. D. Hack, M. S. Topaler, and D. G. Truhlar, J. Chem. Phys. 112, 9716 (2000).
http://dx.doi.org/10.1063/1.481609
33.
33. M. D. Hack and D. G. Truhlar, J. Chem. Phys. 114, 2894 (2001).
http://dx.doi.org/10.1063/1.1342224
34.
34. A. W. Jasper, M. D. Hack, and D. G. Truhlar, J. Chem. Phys. 115, 1804 (2001).
http://dx.doi.org/10.1063/1.1377891
35.
35. C. Zhu, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. 120, 5543 (2004).
http://dx.doi.org/10.1063/1.1648306
36.
36. C. Zhu, S. Nangia, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. 121, 7658 (2004).
http://dx.doi.org/10.1063/1.1793991
37.
37. A. W. Jasper and D. G. Truhlar, J. Chem. Phys. 123, 064103 (2005).
http://dx.doi.org/10.1063/1.1995695
38.
38. J. Y. Fang and S. Hammes-Schiffer, J. Chem. Phys. 110, 11166 (1999).
http://dx.doi.org/10.1063/1.479058
39.
39. N. Shenvi, J. E. Subotnik, and W. Yang, J. Chem. Phys. 134, 144102 (2011).
http://dx.doi.org/10.1063/1.3575588
40.
40. J. C. Tully, G. H. Gilmer, and M. Shugard, J. Chem. Phys. 71(4), 1630 (1979).
http://dx.doi.org/10.1063/1.438490
41.
41. D. Beeman, J. Comput. Phys. 20, 130 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90059-0
42.
42. A. R. Menzeleev, N. Ananth, and T. F. Milller III, J. Chem. Phys. 135, 074106 (2011).
http://dx.doi.org/10.1063/1.3624766
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/19/10.1063/1.3663870
Loading
/content/aip/journal/jcp/135/19/10.1063/1.3663870
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/19/10.1063/1.3663870
2011-11-21
2016-12-06

Abstract

We evaluate the accuracy of Tully's surface hopping algorithm for the spin-boson model for the case of a small diabatic coupling parameter (V). We calculate the transition rates between diabatic surfaces, and we compare our results to the expected Marcus rates. We show that standard surface hopping yields an incorrect scaling with diabatic coupling (linear in V), which we demonstrate is due to an incorrect treatment of decoherence. By modifying standard surface hopping to include decoherence events, we recover the correct scaling (∼V 2).

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/19/1.3663870.html;jsessionid=IU5so4FQcTUfRbrU5g44iVI0.x-aip-live-02?itemId=/content/aip/journal/jcp/135/19/10.1063/1.3663870&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/19/10.1063/1.3663870&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/19/10.1063/1.3663870'
Right1,Right2,Right3,