Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/19/10.1063/1.3663871
1.
1. W. Kohn, A. Becke, and Y. Parr, J. Phys. Chem. 100, 12974 (1996).
http://dx.doi.org/10.1021/jp960669l
2.
2. C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757 (2009).
http://dx.doi.org/10.1039/b907148b
3.
3. A. D. Becke, J. Chem. Phys. 98, 1372 (1992).
http://dx.doi.org/10.1063/1.464304
4.
4. W. Kohn and L. Sham, Phys. Rev. 140, 1133 (1964).
http://dx.doi.org/10.1103/PhysRev.140.A1133
5.
5. J. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8800
6.
6. J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, and G. I. Csonka, J. Chem. Phys. 123, 062201 (2005).
http://dx.doi.org/10.1063/1.1904565
7.
7. R. Peverati, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. Lett. 2, 1991 (2011);
http://dx.doi.org/10.1021/jz200616w
7.In Eq. (3), the second minus should be plus.
8.
8. A. D. Becke, Phys. Rev. A 38, 3098 (1987);
http://dx.doi.org/10.1103/PhysRevA.38.3098
8.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1987);
http://dx.doi.org/10.1103/PhysRevB.37.785
8.A. D. Becke, J. Chem. Phys. 98, 5648 (1992).
http://dx.doi.org/10.1063/1.464913
9.
9. P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1993).
http://dx.doi.org/10.1021/j100096a001
10.
10. H. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624 (1997).
http://dx.doi.org/10.1063/1.476438
11.
11. T. Keal and D. Tozer, J. Chem. Phys. 123, 121103 (2005).
http://dx.doi.org/10.1063/1.2061227
12.
12. A. D. Becke, J. Chem. Phys. 107, 8554 (1996).
http://dx.doi.org/10.1063/1.475007
13.
13. C. Adamo and V. Barone, Chem. Phys. Lett. 298, 113 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)01201-9
14.
14. A. Becke, J. Chem. Phys. 104, 1040 (1996).
http://dx.doi.org/10.1063/1.470829
15.
15. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005).
http://dx.doi.org/10.1063/1.2126975
16.
16. Y. Zhao, B. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 4786 (2003).
http://dx.doi.org/10.1021/jp049253v
17.
17. T. Leininger, H. Stoll, H.-J. Werner, and A. Savin, Chem. Phys. Lett. 275, 151 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00758-6
18.
18. C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).
http://dx.doi.org/10.1063/1.475428
19.
19. B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, J. Phys. Chem. A 104, 4811 (2000).
http://dx.doi.org/10.1021/jp000497z
20.
20. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2005).
http://dx.doi.org/10.1021/ct0502763
21.
21. A. Karton, A. Tarnopolsky, J.-F. Lamere, G. C. Schatz, and J. M. L. Martin, J. Phys. Chem. A 112, 12868 (2007).
http://dx.doi.org/10.1021/jp801805p
22.
22. A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, J. Chem. Phys. 125, 144108 (2006).
http://dx.doi.org/10.1063/1.2348881
23.
23. A. Karton, P. R. Taylor, and J. M. L. Martin, J. Chem. Phys. 127, 064104 (2007).
http://dx.doi.org/10.1063/1.2755751
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.3663871 for the new reference data for MGAE109/11. [Supplementary Material]
25.
25. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 109, 5656 (2005).
http://dx.doi.org/10.1021/jp050536c
26.
26. B. J. Lynch, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A 107, 1384 (2003).
http://dx.doi.org/10.1021/jp021590l
27.
27. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 10478 (2006).
http://dx.doi.org/10.1021/jp0630626
28.
28. Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2005).
http://dx.doi.org/10.1063/1.2370993
29.
29. E. Izgorodina, M. Coote, and L. Radom, J. Phys. Chem. A 109, 7558 (2005).
http://dx.doi.org/10.1021/jp052021r
30.
30. Y. Zhao, and D. G. Truhlar, Org. Lett. 8, 5753 (2006).
http://dx.doi.org/10.1021/ol062318n
31.
31. Y. Zhao, B. J. Lynch, and D. G. Truhlar, Phys. Chem. Chem. Phys. 7, 43 (2005);
http://dx.doi.org/10.1039/b416937a
31.Y. Zhao, N. González-García, and D. G. Truhlar, J. Phys. Chem. A 109, 2012 (2005);
http://dx.doi.org/10.1021/jp045141s
31.J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 5, 808 (2009).
http://dx.doi.org/10.1021/ct800568m
32.
32. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 1, 415 (2005).
http://dx.doi.org/10.1021/ct049851d
33.
33. S. Chakravorty, S. Gwaltney, E. Davidson, F. Parpia, and C. Fischer, Phys. Rev. A 47, 3649 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.3649
34.
34. L. Radom, P. R. Schleyer, J. A. Pople, and W. J. Hehre, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
35.
35. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2007).
http://dx.doi.org/10.1021/ct800246v
36.
36. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.1, Gaussian, Inc., Pittsburgh, PA, 2009.
37.
37.See http://comp.chem.umn.edu/mfm/ for the Minnesota Functional Module, version 1.3..
38.
38. Y. Zhao and D. G. Truhlar, J. Chem. Phys. 128, 184109 (2008).
http://dx.doi.org/10.1063/1.2912068
39.
39. G. E. Scuseria and V. N. Staroverov, Theory and Applications of Computational Chemistry: The First Fifty Years (Elsevier, Amsterdam, 2005), pp. 669724.
40.
40. P. S. Svendesen and U. von Barth, Phys. Rev. B 54, 17402 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17402
41.
41. R. Peverati and D. G. Truhlar, “Spline implementation of generalized gradient approximations to the exchange-correlation functional and study of the sensitivity of density functional accuracy to localized domains of the reduced density gradient,” J. Chem. Theory Comput. (to be published).
42.
42. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1995).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
43.
43. C. Adamo and V. Barone, Chem. Phys. Lett. 274, 242 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00651-9
44.
44. N. Handy and A. Cohen, Mol. Phys. 99, 403 (2001).
http://dx.doi.org/10.1080/00268970010018431
45.
45. J. P. Perdew, Electronic Structure of Solids ’91 (Akademie Verlag, Berlin, 1991), p. 11.
46.
46. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
http://dx.doi.org/10.1007/s00214-007-0310-x
47.
47. R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011); in Eqs. (21) and (22), Y should be (X/100).
http://dx.doi.org/10.1021/jz201170d
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/19/10.1063/1.3663871
Loading
/content/aip/journal/jcp/135/19/10.1063/1.3663871
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/19/10.1063/1.3663871
2011-11-21
2016-09-26

Abstract

We extend our recent SOGGA11 approximation to the exchange-correlation functional to include a percentage of Hartree-Fock exchange. The new functional, called SOGGA11-X, has better overall performance for a broad chemical database than any previously available global hybrid generalized gradient approximation, and in addition it satisfies an extra physical constraint in that it is correct to second order in the density-gradient.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/19/1.3663871.html;jsessionid=_uOTaLHnkA1ZrEEOJRdfWgXM.x-aip-live-03?itemId=/content/aip/journal/jcp/135/19/10.1063/1.3663871&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/19/10.1063/1.3663871&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/19/10.1063/1.3663871'
Right1,Right2,Right3,