1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Dissipative quantum coherent dynamics probed in phase-space: Electronically resonant 5-color 4-wave mixing on I2(B) in solid Kr
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/2/10.1063/1.3598959
1.
1. D. Segale, M. Karavitis, E. Fredj, and V. A. Apkarian, J. Chem. Phys. 122, 111104 (2005).
http://dx.doi.org/10.1063/1.1883634
2.
2. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
3.
3. N. Schwentner and V. A. Apkarian, Chem. Rev. 99, 1481 (1999).
http://dx.doi.org/10.1021/cr9404609
4.
4. D. Segale, PhD dissertation, University of California, Irvine, 2007.
5.
5. K. Ohmori, Annu. Rev. Phys. Chem. 60, 487 (2009).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093818
6.
6. M. Ovchinnikov and V. A. Apkarian, J. Chem. Phys. 106, 5775 (1997).
http://dx.doi.org/10.1063/1.473596
7.
7. D. J. Tannor and S. Garashchuk, Annu. Rev. Phys. Chem. 51, 553 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.553
8.
8. Z. Ma and D. F. Coker, J. Chem. Phys. 128, 244108 (2008).
http://dx.doi.org/10.1063/1.2944270
9.
9. R. Zadoyan, M. Sterling, and V. A. Apkarian, J. Chem. Soc. Faraday Trans. 92, 1821 (1996).
http://dx.doi.org/10.1039/ft9969201821
10.
10. M. Sterling, R. Zadoyan, and V. A. Apkarian, J. Chem. Phys. 104, 6497 (1996).
http://dx.doi.org/10.1063/1.471370
11.
11. A. Albrecht, Phys. Rev. D 46, 5504 (1992).
http://dx.doi.org/10.1103/PhysRevD.46.5504
12.
12. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I. O. Stamatescu, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996).
13.
13. R. T. Beyer, Mathematical Foundations of Quantum Mechanics (Princeton University, Princeton, NJ, 1955).
14.
14. A. Venugopalan, D. Kumar, and R. Gosh, Physica A 220, 563 (1995).
http://dx.doi.org/10.1016/0378-4371(95)00184-9
15.
15. W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.715
16.
16. M. Guhr, H. Ibrahim, and N. Schwentner, Phys. Chem. Chem. Phys. 6, 5353 (2004).
http://dx.doi.org/10.1039/b413635g
17.
17. M. Guhr, M. Bargheer, M. Fushitani, T. Kiljunen, and N. Schwentner, Phys. Chem. Chem. Phys. 9, 779 (2007).
http://dx.doi.org/10.1039/b609058n
18.
18. M. Fushitani, M. Bargheer, M. Guhr, and N. Schwentner, Phys. Chem. Chem. Phys. 7, 3143 (2005).
http://dx.doi.org/10.1039/b509153e
19.
19. M. Fushitani, M. Bargheer, M. Guhr, H. Ibrahim, and N. Schwentner, J. Phys. B 41, 074013 (2008).
http://dx.doi.org/10.1088/0953-4075/41/7/074013
20.
20. H. Ibrahim, M. Hejjas, and N. Schwentner, Phys. Rev. Lett. 102, 088301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.088301
21.
21. A. J. Leggett, J. Phys.: Condens. Matter 14, R415 (2002).
http://dx.doi.org/10.1088/0953-8984/14/15/201
22.
22. A. Peres, Phys. Rev. A 30, 1610 (1984).
http://dx.doi.org/10.1103/PhysRevA.30.1610
23.
23. W. H. Zurek, Phys. Today 44(10), 36 (1991).
http://dx.doi.org/10.1063/1.881293
24.
24. D. Cohen, Phys. Rev. E 65, 026218 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.026218
25.
25. G. A. Fiete and E. J. Heller, Phys. Rev. A 68, 022112 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.022112
26.
26. M. Bargheer, M. Gühr, P. Dietrich, and N. Schwentner, Phys. Chem. Chem. Phys. 4, 75 (2002).
http://dx.doi.org/10.1039/b106819a
27.
27. W. H. Zurek, Prog. Theor. Phys. 89, 281 (1993).
http://dx.doi.org/10.1143/PTP.89.281
28.
28. T. Kiviniemi, J. Aumanen, P. Myllyperkio, V. A. Apkarian, and M. Pettersson, J. Chem. Phys. 123, 064509 (2005).
http://dx.doi.org/10.1063/1.1990115
29.
29. This consideration is the basis of the principle of momentum filtering, previously demonstrated in time resolved CARS measurements.
30.
30. S. Durr, T. Nonn, and G. Rempe, Nature (London) 395, 33 (1998).
http://dx.doi.org/10.1038/25653
31.
31. M. Bargheer, P. Dietrich, K. Donovang, and N. Schwentner, J. Chem. Phys. 111, 8556 (1999).
http://dx.doi.org/10.1063/1.480196
32.
32. R. Zadoyan, M. Sterling, M. Ovchinnikov, and V. A. Apkarian, J. Chem. Phys. 107, 8446 (1997).
http://dx.doi.org/10.1063/1.475045
33.
33. The Morse parameters suitable for solid Kr are: De = 6400 cm–1, ωe = 123.2 cm–1, ωexe = 0.593 cm–1, and Te = 15 400 cm–1.
34.
34. Z. Bihary, R. Zadoyan, M. Karavitis, and V. A. Apkarian, J. Chem. Phys. 120, 7576 (2004).
http://dx.doi.org/10.1063/1.1689958
35.
35. V. Senekerimyan, I. Goldschleger, and V. A. Apkarian, J. Chem. Phys. 127, 214511 (2007).
http://dx.doi.org/10.1063/1.2803922
36.
36. T. S. Humble and J. A. Cina, Phys. Rev. Lett. 93, 060402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.060402
37.
37. M. Ovchinnikov and V. A. Apkarian, J. Chem. Phys. 105, 10312 (1996).
http://dx.doi.org/10.1063/1.472959
38.
38. T. Brixner, N. H. Damrauer, and G. Gerber, Adv. At., Mol., Opt. Phys. 46, 1 (2001).
http://dx.doi.org/10.1016/S1049-250X(01)80062-8
39.
39. J. A. Cina, Annu. Rev. Phys. Chem 59, 319 (2008).
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093753
40.
40. M. Razavy, Classical and Quantum Dissipative Systems (Imperial College Press, London, 2005).
41.
41. V. V. Dodonov, S. S. Mizrahi, and A. L. de Souza Silva, J. Opt. B: Quantum Semiclassical Opt. 2, 271 (2000).
http://dx.doi.org/10.1088/1464-4266/2/3/309
42.
42. Z. Bihary, M. Karavitis, and V. A. Apkarian, J. Chem. Phys. 120, 8144 (2004).
http://dx.doi.org/10.1063/1.1691407
43.
43. See for example, Y. Ohtsuki and Y. Fujimura, J. Chem. Phys. 91, 3903 (1989).
http://dx.doi.org/10.1063/1.456822
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/2/10.1063/1.3598959
Loading
/content/aip/journal/jcp/135/2/10.1063/1.3598959
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/2/10.1063/1.3598959
2011-07-08
2014-10-25

Abstract

Spectrally resolved, 4-wave mixingmeasurements in five resonant colors are used to interrogate vibronic quantum coherences in phase-space. We highlight the principles through measurements on the B-state of I2 in solid Kr – a prototype of a system strongly coupled to its environment. The measurements consist of preparing a superposition of wavepackets on the B-state and interrogating their cross-coherence as they get entangled with the environment. The study provides direct realizations of fundamental quantum principles in the mechanics of molecular matter, among them: the distinction between quantum and classical coherent dynamics of a system entangled with the environment, coherent dissipation, event-driven decoherence, environment selected coherent states, and non-local mechanics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/2/1.3598959.html;jsessionid=1gunk6s3cjden.x-aip-live-06?itemId=/content/aip/journal/jcp/135/2/10.1063/1.3598959&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dissipative quantum coherent dynamics probed in phase-space: Electronically resonant 5-color 4-wave mixing on I2(B) in solid Kr
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/2/10.1063/1.3598959
10.1063/1.3598959
SEARCH_EXPAND_ITEM