Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/2/10.1063/1.3605657
1.
1.P. Ball, Nature (London) 452(7185), 291 (2008).
http://dx.doi.org/10.1038/452291a
2.
2.Y. R. Shen and V. Ostroverkhov, Chem. Rev. (Washington, D.C.) 106(4), 1140 (2006).
http://dx.doi.org/10.1021/cr040377d
3.
3.Q. Du, R. Superfine, E. Freysz, and Y. R. Shen, Phys. Rev. Lett. 70(15), 2313 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.2313
4.
4.Q. Du, E. Freysz, and Y. R. Shen, Science 264(5160), 826 (1994).
http://dx.doi.org/10.1126/science.264.5160.826
5.
5.L. Scatena, M. Brown, and G. Richmond, Science 292(5518), 908 (2001).
http://dx.doi.org/10.1126/science.1059514
6.
6.M. J. Shultz, S. Baldelli, C. Schnitzer, and D. Simonelli, J. Phys. Chem. B 106(21), 5313 (2002).
http://dx.doi.org/10.1021/jp014466v
7.
7.E. C. Brown, M. Mucha, P. Jungwirth, and D. J. Tobias, J. Phys. Chem. B 109(16), 7934 (2005).
http://dx.doi.org/10.1021/jp0450336
8.
8.W. Gan, D. Wu, Z. Zhang, R. Feng, and H. Wang, J. Chem. Phys. 124(11), 114705 (2006).
http://dx.doi.org/10.1063/1.2179794
9.
9.M. Sovago, R. K. Campen, G. W. H. Wurpel, M. Muller, H. J. Bakker, and M. Bonn, Phys. Rev. Lett. 100(17), 173901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.173901
10.
10.S. Gopalakrishnan, D. F. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, Chem. Rev. (Washington, D.C.) 106(4), 1155 (2006).
http://dx.doi.org/10.1021/cr040361n
11.
11.B. M. Auer and J. L. Skinner, J. Chem. Phys. 129(21), 214705 (2008).
http://dx.doi.org/10.1063/1.3012568
12.
12.Y. B. Fan, X. Chen, L. J. Yang, P. S. Cremer, and Y. Q. Gao, J. Phys. Chem. B 113(34), 11672 (2009).
http://dx.doi.org/10.1021/jp900117t
13.
13.C. S. Tian and Y. R. Shen, Chem. Phys. Lett. 470(1–3), 1 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.01.016
14.
14.M. Sovago, R. K. Campen, H. J. Bakker, and M. Bonn, Chem. Phys. Lett. 470(1–3), 7 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.01.009
15.
15.G. Stirnemann, P. J. Rossky, J. T. Hynes, and D. Laage, Faraday Discuss. 146, 263 (2010).
http://dx.doi.org/10.1039/b925673c
16.
16.J. A. Mondal, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Am. Chem. Soc. 132(31), 10656 (2010).
http://dx.doi.org/10.1021/ja104327t
17.
17.Y. R. Shen, Nature (London) 337(6207), 519 (1989).
http://dx.doi.org/10.1038/337519a0
18.
18.S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Am. Chem. Soc. 132(20), 6867 (2010).
http://dx.doi.org/10.1021/ja910914g
19.
19.N. Ji, V. Ostroverkhov, C. S. Tian, and Y. R. Shen, Phys. Rev. Lett. 100(9), 096102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096102
20.
20.S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Chem. Phys. 130(20), 204704 (2009).
http://dx.doi.org/10.1063/1.3135147
21.
21.M. D. Fayer, D. E. Moilanen, D. Wong, D. E. Rosenfeld, E. E. Fenn, and S. Park, Acc. Chem. Res. 42(9), 1210 (2009).
http://dx.doi.org/10.1021/ar900043h
22.
22.S. T. Roberts, K. Ramasesha, and A. Tokmakoff, Acc. Chem. Res. 42(9), 1239 (2009).
http://dx.doi.org/10.1021/ar900088g
23.
23.M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, Nature (London) 434(7030), 199 (2005).
http://dx.doi.org/10.1038/nature03383
24.
24.D. Kraemer, M. L. Cowan, A. Paarmann, N. Huse, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, Proc. Natl. Acad. Sci. U.S.A. 105(2), 437 (2008).
http://dx.doi.org/10.1073/pnas.0705792105
25.
25.J. Bredenbeck, A. Ghosh, H. K. Nienhuys, and M. Bonn, Acc. Chem. Res. 42(9), 1332 (2009).
http://dx.doi.org/10.1021/ar900016c
26.
26.J. B. Asbury, T. Steinel, K. Kwak, S. A. Corcelli, C. P. Lawrence, J. L. Skinner, and M. D. Fayer, J. Chem. Phys. 121(24), 12431 (2004).
http://dx.doi.org/10.1063/1.1818107
27.
27.S. Woutersen and H. J. Bakker, Nature (London) 402(6761), 507 (1999).
http://dx.doi.org/10.1038/990058
28.
28.L. Piatkowski, K. B. Eisenthal, and H. J. Bakker, Phys. Chem. Chem. Phys. 11(40), 9033 (2009).
http://dx.doi.org/10.1039/b908975f
29.
29.M. Bonn, H. J. Bakker, A. Ghosh, S. Yamamoto, M. Sovago, and R. K. Campen, J. Am. Chem. Soc. 132(42), 14971 (2010).
http://dx.doi.org/10.1021/ja106194u
30.
30.Y. Nagata and S. Mukamel, J. Am. Chem. Soc. 133, 3276 (2011).
http://dx.doi.org/10.1021/ja110748s
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/2/10.1063/1.3605657
Loading
/content/aip/journal/jcp/135/2/10.1063/1.3605657
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/2/10.1063/1.3605657
2011-07-08
2016-09-25

Abstract

Knowledge of the interfacial waterstructure is essential for a basic understanding of the many environmental, technological, and biophysical systems in which aqueous interfaces appear. Using ultrafast two-dimensional surface-specific vibrational spectroscopy we show that the structure of heavy water at the water-air interface displays short-lived heterogeneity and is very different from that at the water-lipid interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/2/1.3605657.html;jsessionid=uvJXaUcnS2W5Gela_jouYLGW.x-aip-live-03?itemId=/content/aip/journal/jcp/135/2/10.1063/1.3605657&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/2/10.1063/1.3605657&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/2/10.1063/1.3605657'
Right1,Right2,Right3,