Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/2/10.1063/1.3608919
1.
1. B. C. Garrett, D. A. Dixon, D. M. Camaioni, D. M. Chipman, M. A. Johnson, C. D. Jonah, G. A. Kimmel, J. H. Miller, T. N. Rescigno, P. J. Rossky, S. S. Xantheas, S. D. Colson, A. H. Laufer, D. Ray, P. F. Barbara, D. M. Bartels, K. H. Becker, H. Bowen, S. E. Bradforth, I. Carmichel, J. V. Coe, L. R. Corrales, J. P. Cowin, M. Dupuis, K. B. Eisenthal, J. A. Frantz, M. S. Gutowski, K. D. Jordan, B. D. Kay, J. A. LaVerne, S. V. Lymar, T. E. Madey, C. W. McCurdy, D. Meisel, S. Muchamel, A. R. Nilsson, T. M. Orlando, N. G. Petrik, S. M. Pimblott, J. R. Rustad, G. K. Schenter, S. J. Singer, A. Tokmakoff, L. S. Wang, C. Wittig, and T. S. Zwier, Chem. Rev. 105(1), 355 (2005).
http://dx.doi.org/10.1021/cr030453x
2.
2. C. Wittig, S. Sharpe, and R. A. Beaudet, Acc. Chem. Res. 21(9), 341 (1988).
http://dx.doi.org/10.1021/ar00153a004
3.
3. Y. S. Li, R. M. Whitnell, K. R. Wilson, and R. D. Levine, J. Phys. Chem. 97(15), 3647 (1993).
http://dx.doi.org/10.1021/j100117a003
4.
4. S. Aloisio and J. S. Francisco, Acc. Chem. Res. 33, 825 (2000).
http://dx.doi.org/10.1021/ar000097u
5.
5. M. Staikova and D. J. Donaldson, Phys. Chem. Earth, Part C, Sol.-Terr. Planet. Sci. 26, 473 (2001).
6.
6. M. Staikova and D. J. Donaldson, Phys. Chem. Chem. Phys. 3(11), 1999 (2001).
http://dx.doi.org/10.1039/b101755l
7.
7. V. Vaida, J. Phys. Chem. A 113, 5 (2009).
http://dx.doi.org/10.1021/jp806365r
8.
8. V. Vaida and J. E. Headrick, J. Phys. Chem. A 104(23), 5401 (2000).
http://dx.doi.org/10.1021/jp000115p
9.
9. A. A. Vigasin and Z. Slanina, Molecular Complexes in Earth's Planetary, Cometary and Interstellar Atmospheres (World Scientific, Singapore, 1998).
10.
10. H. G. Kjaergaard, T. W. Robinson, D. L. Howard, J. S. Daniel, J. E. Headrick, and V. Vaida, J. Phys. Chem. A 107, 10680 (2003).
http://dx.doi.org/10.1021/jp035098t
11.
11. V. Vaida, J. S. Daniel, H. G. Kjaergaard, L. M. Goss, and A. F. Tuck, Q. J. R. Meteorol. Soc. 127(575), 1627 (2001).
http://dx.doi.org/10.1002/qj.49712757509
12.
12. V. Vaida, H. G. Kjaergaard, and K. J. Feierabend, Int. Rev. Phys. Chem. 22, 203 (2003).
http://dx.doi.org/10.1080/0144235031000075780
13.
13. Z. Slanina, H. Uhrlik, S. L. Lee, and S. Nagase, J. Quantum Spectrosc. Rad. Trans. 97(3), 415 (2006).
http://dx.doi.org/10.1016/j.jqsrt.2005.05.065
14.
14. G. K. Schenter, S. M. Kathmann, and B. C. Garrett, J. Phys. Chem. A 106(8), 1557 (2002).
http://dx.doi.org/10.1021/jp0129131
15.
15. G. K. Schenter, J. Chem. Phys. 108(15), 6222 (1998).
http://dx.doi.org/10.1063/1.476029
16.
16. N. Goldman, C. Leforestier, and R. J. Saykally, J. Phys. Chem. A 108(5), 787 (2004).
http://dx.doi.org/10.1021/jp035360y
17.
17. M. Weimann, M. Farnik, and M. A. Suhm, Phys. Chem. Chem. Phys. 4, 3933 (2002).
http://dx.doi.org/10.1039/b204840j
18.
18. A. J. Huneycutt, R. J. Stickland, F. Hellberg, and R. J. Saykally, J. Chem. Phys. 118, 1221 (2003).
http://dx.doi.org/10.1063/1.1529177
19.
19. M. Cirtog, P. Asselin, P. Soulard, B. Tremblay, B. Madebene, and M. E. Alikhani, J. Phys. Chem. A 115(12), 2523 (2011).
http://dx.doi.org/10.1021/jp111507z
20.
20. M. Rozenberg and A. Loewenschuss, J. Phys. Chem. A 113(17), 4963 (2009).
http://dx.doi.org/10.1021/jp810389r
21.
21. L. Schriver, C. Barreau, and A. Schriver, Chem. Phys. 140(3), 429 (1990).
http://dx.doi.org/10.1016/0301-0104(90)80009-M
22.
22. P. G. Sennikov, S. K. Ignatov, and O. Schrems, ChemPhysChem 6(3), 392 (2005).
http://dx.doi.org/10.1002/cphc.200400405
23.
23. S. D. Flynn, D. Skvortsov, A. M. Morrison, T. Liang, M. Y. Choi, G. E. Douberly, and A. F. Vilesov, J. Phys. Chem. Lett. 1(15), 2233 (2010).
http://dx.doi.org/10.1021/jz100637m
24.
24. S. Kuma, M. N. Slipchenko, T. Momose, and A. F. Vilesov, J. Phys. Chem. A 114(34), 9022 (2010).
http://dx.doi.org/10.1021/jp908450c
25.
25. W. Klemperer and V. Vaida, Proc. Natl. Acad. Sci. U.S.A. 103(28), 10584 (2006).
http://dx.doi.org/10.1073/pnas.0508231103
26.
26. H. O. Leung, M. D. Marshall, R. D. Suenram, and F. J. Lovas, J. Chem. Phys. 90(2), 700 (1989).
http://dx.doi.org/10.1063/1.456149
27.
27. I. J. Palmer, W. B. Brown, and I. H. Hillier, J. Chem. Phys. 104(9), 3198 (1996).
http://dx.doi.org/10.1063/1.471084
28.
28. T. W. Robinson and H. G. Kjaergaard, J. Chem. Phys. 119(7), 3717 (2003).
http://dx.doi.org/10.1063/1.1591733
29.
29. G. M. Hartt, G. C. Shields, and K. N. Kirshner, J. Phys. Chem. A 112(19), 4490 (2008).
http://dx.doi.org/10.1021/jp800229k
30.
30. T. Salmi, N. Runeberg, L. Halonen, J. R. Lane, and H. G. Kjaergaard, J. Phys. Chem. A 114(14), 4835 (2010).
http://dx.doi.org/10.1021/jp909441u
31.
31. D. P. Schofield and H. G. Kjaergaard, J. Chem. Phys. 120(15), 6930 (2004).
http://dx.doi.org/10.1063/1.1687335
32.
32. S. Y. Du, J. S. Francisco, G. K. Schenter, T. D. Iordanov, B. C. Garrett, M. Dupuis, and J. Li, J. Chem. Phys. 124(22) (2006).
http://dx.doi.org/10.1063/1.2200701
33.
33. S. Y. Du and J. S. Francisco, J. Chem. Phys. 130(12), 124304 (2009).
http://dx.doi.org/10.1063/1.3089869
34.
34. J. Clark, A. M. English, J. C. Hansen, and J. S. Francisco, J. Phys. Chem. A 112(7), 1587 (2008).
http://dx.doi.org/10.1021/jp077266d
35.
35. M. A. Allodi, M. E. Dunn, J. Livada, K. N. Kirschner, and G. C. Shilds, J. Phys. Chem. A 110, 13283 (2006).
http://dx.doi.org/10.1021/jp064468l
36.
36. T. D. Crawford, M. L. Abrams, R. A. King, J. R. Lane, D. P. Schofield, and H. G. Kjaergaard, J. Chem. Phys. 125(20), 204302 (2006).
http://dx.doi.org/10.1063/1.2388260
37.
37. S. Aloisio, P. E. Hintze, and V. Vaida, J. Phys. Chem. A 106(2), 363 (2002).
http://dx.doi.org/10.1021/jp012190l
38.
38. S. Aloisio and J. S. Francisco, J. Phys. Chem. A 102(11), 1899 (1998).
http://dx.doi.org/10.1021/jp972173p
39.
39. J. S. Francisco and S. P. Sander, J. Am. Chem. Soc. 117(39), 9917 (1995).
http://dx.doi.org/10.1021/ja00144a021
40.
40. P. Soloveichik, B. A. O’Donnell, and M. I. Lester, J. Phys. Chem. A 114, 1520 (2010).
http://dx.doi.org/10.1021/jp907885d
41.
41. Y. Kasai, E. Dupui, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys. Discuss. 11, 10060 (2011).
http://dx.doi.org/10.5194/acpd-11-10069-2011
42.
42. A. K. Mollner, B. E. Casterline, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 113, 10174 (2009).
http://dx.doi.org/10.1021/jp904566w
43.
43. G. Frost and V. Vaida, J. Geophys. Res., [Atmos.] 100(D9), 18803 (1995).
http://dx.doi.org/10.1029/95JD01940
44.
44. J. C. Hansen and J. S. Francisco, ChemPhysChem 3(10), 833 (2002).
http://dx.doi.org/10.1002/1439-7641(20021018)3:10<833::AID-CPHC833>3.0.CO;2-0
45.
45. K. L. Alpin and R. A. McPheat, J. Atmos. Sol.-Terr. Phys. 67, 775 (2005).
http://dx.doi.org/10.1016/j.jastp.2005.01.007
46.
46. B. E. Rocher-Casterline, L. C. Ch'ng, A. K. Mollner, and H. Reisler, J. Chem. Phys. 134, 211101 (2011).
http://dx.doi.org/10.1063/1.3598339
47.
47. C. Leforestier, L. B. Braly, K. Liu, M. J. Elrod, and R. J. Saykally, J. Chem. Phys. 106(20), 8527 (1997).
http://dx.doi.org/10.1063/1.473908
48.
48. I. V. Ptashnik, J. Quant. Spectrosc. Radiat. Transf. 109(5), 831 (2008).
http://dx.doi.org/10.1016/j.jqsrt.2007.09.004
49.
49. D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. McPheat, and R. G. Williams, J. Geophys. Res., [Atmos.] 114, D21301 (2009).
http://dx.doi.org/10.1029/2008JD011355
50.
50. K. Morokuma and C. Muguruma, J. Am. Chem. Soc. 116(22), 10316 (1994).
http://dx.doi.org/10.1021/ja00101a068
51.
51. J. L. Axson, K. Takahashi, D. O. De Haan, and V. Vaida, Proc. Natl. Acad. Sci. U.S.A. 107(15), 6687 (2010).
http://dx.doi.org/10.1073/pnas.0912121107
52.
52. C. S. Tautermann, A. F. Voegele, T. Loerting, I. Kohl, A. Hallbruker, E. Mayer, and K. R. Liedl, Chem.-Eur. J. 8(1), 66 (2002).
http://dx.doi.org/10.1002/1521-3765(20020104)8:1<66::AID-CHEM66>3.0.CO;2-F
53.
53. D. L. Phillips, C. Zhao, and D. Wang, J. Phys. Chem. A 109, 9653 (2005).
http://dx.doi.org/10.1021/jp053015y
54.
54. X. Xu, R. P. Muller, and W. A. Goddard III, Proc. Natl. Acad. Sci. U.S.A. 99, 3376 (2002).
http://dx.doi.org/10.1073/pnas.052710099
55.
55. Z. C. Kramer, K. Takahashi, and R. T. Skodje, J. Am. Chem. Soc. 132(43), 15154 (2010).
http://dx.doi.org/10.1021/ja107335t
56.
56. D. J. Donaldson, M. S. Child, and V. Vaida, J. Phys. Chem. 88(12), 7410 (1988).
http://dx.doi.org/10.1063/1.454304
57.
57. D. J. Donaldson, V. Vaida, and R. Naaman, J. Phys. Chem. 92(5), 1204 (1988).
http://dx.doi.org/10.1021/j100316a039
58.
58. G. W. Robinson, J. Chem. Phys. 46, 572 (1967).
http://dx.doi.org/10.1063/1.1840705
59.
59. D. J. Donaldson, G. A. Gaines, and V. Vaida, J. Phys. Chem. 92(10), 2766 (1988).
http://dx.doi.org/10.1021/j100321a015
60.
60. J. Kongsted, A. Osted, K. V. Mikkelsen, P. O. Astrand, and O. Christiansen, J. Chem. Phys. 121(17), 8435 (2004).
http://dx.doi.org/10.1063/1.1804957
61.
61. V. Vaida, G. J. Frost, L. A. Brown, R. Naaman, and Y. Hurwitz, Ber. Bunsenges. Phys. Chem. 99(3), 371 (1995).
62.
62. T. N. Wassermann, C. A. Rice, M. A. Suhm, and D. Luckhaus, J. Chem. Phys. 127(23), 234309 (2007).
http://dx.doi.org/10.1063/1.2806181
63.
63. R. K. Campen and J. D. Kubicki, J. Comput. Chem. 31(5), 963 (2010).
64.
64. S. Aloisio and J. S. Francisco, Chem. Phys. Lett. 329(3-4), 179 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01001-0
65.
65. R. Nadasdi, G. Kovacs, I. Szilagyi, A. Demeter, S. Dobe, T. Berces, and F. Marta, Chem. Phys. Lett. 440(1–3), 31 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.04.014
66.
66. Y. Hurvitz and R. Naaman, J. Chem. Phys. 102, 1941 (1995).
http://dx.doi.org/10.1063/1.468760
67.
67. V. Vaida, D. J. Donaldson, S. J. Strickler, S. L. Stephens, and J. W. Birks, J. Phys. Chem. 93(2), 506 (1989).
http://dx.doi.org/10.1021/j100339a003
68.
68. R. B. Gerber and J. Sebek, Int. Rev. Phys. Chem. 28(2), 207 (2009).
http://dx.doi.org/10.1080/01442350903016684
69.
69. P. P. Bera, M. Nuevo, S. N. Milam, S. A. Sanford, and T. J. Lee, J. Chem. Phys. 133, 104303 (2010).
http://dx.doi.org/10.1063/1.3478524
70.
70. P. O. Wennberg, R. J. Salawitch, D. J. Donaldson, T. F. Hanisco, E. J. Lanzendorf, K. K. Perkins, S. A. Lloyd, V. Vaida, R. S. Gao, E. J. Hintsa, R. C. Cohen, W. H. Swartz, T. L. Kusterer, and D. E. Anderson, Geophys. Res. Lett. 26(10), 1373 (1999).
http://dx.doi.org/10.1029/1999GL900255
71.
71. D. J. Donaldson, C. George, and V. Vaida, Environ. Sci. Technol. 44(14), 5321 (2010).
http://dx.doi.org/10.1021/es903680v
72.
72. D. J. Donaldson, A. F. Tuck, and V. Vaida, Chem. Rev. 103(12), 4717 (2003).
http://dx.doi.org/10.1021/cr0206519
73.
73. V. Vaida, Int. J. Photoenergy 7(2), 61 (2005).
http://dx.doi.org/10.1155/S1110662X05000103
74.
74. F. F. Crim, Annu. Rev. Phys. Chem. 44, 397 (1993).
http://dx.doi.org/10.1146/annurev.pc.44.100193.002145
75.
75. V. Vaida, H. G. Kjaergaard, P. E. Hintze, and D. J. Donaldson, Science 299(5612), 1566 (2003).
http://dx.doi.org/10.1126/science.1079297
76.
76. K. Takahashi, K. L. Plath, R. T. Skodje, and V. Vaida, J. Phys. Chem. A 112(32), 7321 (2008).
http://dx.doi.org/10.1021/jp803225c
77.
77. K. Takahashi, K. L. Plath, J. L. Axson, G. C. Nelson, R. T. Skodje, and V. Vaida, J. Phys. Chem. A 132, 094305 (2010).
http://dx.doi.org/10.1063/1.3327839
78.
78. K. Takahashi, Z. C. Kramer, V. Vaida, and R. T. Skodje, Phys. Chem. Chem. Phys. 9(29), 3864 (2007).
http://dx.doi.org/10.1039/b705264b
79.
79. M. Staikova, M. Oh, and D. J. Donaldson, J. Phys. Chem. A 109(4), 597 (2005).
http://dx.doi.org/10.1021/jp046141v
80.
80. G. Sedo, J. Schultz, and K. R. Leopold, J. Mol. Spectrosc. 251, 4 (2008).
http://dx.doi.org/10.1016/j.jms.2007.09.016
81.
81. G. Sedo, J. L. Doran, and K. R. Leopold, J. Phys. Chem. A 113(42), 11301 (2009).
http://dx.doi.org/10.1021/jp9063033
82.
82. M. Canagaratna, J. A. Phillips, M. E. Ott, and K. R. Leopold, J. Phys. Chem. A 102(9), 1489 (1998).
http://dx.doi.org/10.1021/jp980033p
83.
83. M. B. Craddock, C. S. Brauer, and K. R. Leopold, J. Phys. Chem. A 112(3), 488 (2008).
http://dx.doi.org/10.1021/jp075789f
84.
84. C. S. Brauer, G. Sedo, and K. R. Leopold, Geophys. Res. Lett. 33(23), Art. No. L23805 (2006).
http://dx.doi.org/10.1029/2006GL028110
85.
85. Y. Miller, G. M. Chaban, B. J. Finlayson-Pitts, and R. B. Gerber, J. Phys. Chem. A 110(16), 5342 (2006).
http://dx.doi.org/10.1021/jp0559940
86.
86. Y. Miller and R. B. Gerber, J. Am. Chem. Society 128(30), 9594 (2006).
http://dx.doi.org/10.1021/ja062890+
87.
87. Y. Miller, R. B. Gerber, and V. Vaida, Geophys. Res. Lett. 34(16), L16820 (2007).
http://dx.doi.org/10.1029/2007GL030529
88.
88. I. W. M. Smith and A. R. Ravishankara, J. Phys. Chem. A 106(19), 4798 (2002).
http://dx.doi.org/10.1021/jp014234w
89.
89. H. Hernandez-Soto, F. Weinhold, and J. S. Francisco, J. Chem. Phys. 127, 164102 (2007).
http://dx.doi.org/10.1063/1.2784558
90.
90. S. Du, J. S. Francisco, and S. Kais, J. Chem. Phys. 130, Art. Nr. 124312 (2009).
http://dx.doi.org/10.1063/1.3100549
91.
91. K. S. Alongi, T. S. Dibble, G. C. Shields, and K. N. Kirschner, J. Phys. Chem. A 110(10), 3686 (2006).
http://dx.doi.org/10.1021/jp057165k
92.
92. M. E. Dunn, E. K. Pokon, and G. C. Shields, J. Am. Chem. Soc. 126(8), 2647 (2004).
http://dx.doi.org/10.1021/ja038928p
93.
93. C. S. Brauer, G. Sedo, E. M. Grumstrup, K. R. Leopold, M. D. Marshall, and H. O. Leung, Chem. Phys. Lett. 401(4–6), 420 (2005).
http://dx.doi.org/10.1016/j.cplett.2004.11.090
94.
94. M. D. Marshall and M. I. Lester, J. Phys. Chem. B 109, 8400 (2005).
http://dx.doi.org/10.1021/jp046308k
95.
95. B. Long, W. J. Zhang, X. F. Tan, Z. W. Long, Y. B. Wang, and D. S. Ren, J. Phys. Chem. A 115(8), 1350 (2011).
http://dx.doi.org/10.1021/jp107550w
96.
96. Y. Ohshima, K. Sato, Y. Sumiyoshi, and Y. Endo, J. Am. Chem. Soc. 127(4), 1108 (2005).
http://dx.doi.org/10.1021/ja0442973
97.
97. Y. X. Tang, G. S. Tyndall, and J. J. Orlando, J. Phys. Chem. A 114(1), 369 (2010).
http://dx.doi.org/10.1021/jp905279b
98.
98. E. J. Hamilton and R. R. Lii, Int. J. Chem. Kinet. 9(6), 875 (1977).
http://dx.doi.org/10.1002/kin.550090604
99.
99. R. Zhu and M. C. Lin, Chem. Phys. Lett. 354, 217 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00063-5
100.
100. A. M. English, J. C. Hansen, J. J. Szente, and A. M. Maricq, J. Phys. Chem. A 112(39), 9220 (2008).
http://dx.doi.org/10.1021/jp800727a
101.
101. J. Gonzalez, M. Torrent-Sucarrat, and J. M. Anglada, Phys. Chem. Chem. Phys. 12(9), 2116 (2010).
http://dx.doi.org/10.1039/b916659a
102.
102. S. Jorgensen and H. G. Kjaergaard, J. Phys. Chem. A 114(14), 4857 (2010).
http://dx.doi.org/10.1021/jp910202n
103.
103. E. L. Derro, C. Murray, T. D. Sechler, and M. I. Lester, J. Phys. Chem. A 111(45), 11592 (2007).
http://dx.doi.org/10.1021/jp0760915
104.
104. I. W. M. Smith, S. D. Le Picard, M. Tizniti, A. Canosa, and I. R. Sims, Z. Phys. Chem. 224(7–8), 949 (2010).
105.
105. J. M. Beames, M. I. Lester, C. Murrey, M. E. Varner, and J. F. Stanton, J. Chem. Phys. 134(4), 044304 (2011).
http://dx.doi.org/10.1063/1.3518415
106.
106. I. W. M. Smith, Science 315, 470 (2007).
http://dx.doi.org/10.1126/science.1138496
107.
107. J. M. Anglada and J. Gonzalez, ChemPhysChem 10(17), 3034 (2009).
http://dx.doi.org/10.1002/cphc.200900387
108.
108. E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, Science 315(5811), 497 (2007).
http://dx.doi.org/10.1126/science.1134494
109.
109. E. Vohringer-Martinez, E. Tellbach, M. Liessmann, and B. Abel, J. Phys. Chem. A 114, 9720 (2010).
http://dx.doi.org/10.1021/jp101804j
110.
110. C. Iuga, J. R. Alvarez-Idaboy, and A. Vivier-Bunge, Chem. Phys. Lett. 501, 11 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.10.043
111.
111. B. Canneaux, N. Sokolowski-Gomez, and E. Henon, Phys. Chem. Chem. Phys. 6(22), 5172 (2004).
http://dx.doi.org/10.1039/b409900a
112.
112. R. R. Lii, J. R. A. Gorse, M. C. Sauer, and S. Gordon, J. Phys. Chem. 84, 819 (1980).
http://dx.doi.org/10.1021/j100445a003
113.
113. C. Iuga, J. R. Alvarez-Idaboy, L. Reyes, and A. Vivier-Bunge, J. Phys. Chem. Lett. 1, 3112 (2010).
http://dx.doi.org/10.1021/jz101218n
114.
114. E. R. Lovejoy, D. R. Hanson, and L. G. Huey, J. Phys. Chem. 100(51), 19911 (1996).
http://dx.doi.org/10.1021/jp962414d
115.
115. C. E. Kolb, J. T. Jayne, D. R. Worsnop, M. J. Molina, R. F. Meads, and A. A. Viggiano, J. Am. Chem. Soc. 116(22), 10314 (1994).
http://dx.doi.org/10.1021/ja00101a067
116.
116. J. T. Jayne, U. Poschl, Y. M. Chen, D. Dai, L. T. Molina, D. R. Worsnop, C. E. Kolb, and M. J. Molina, J. Phys. Chem. A 101(51), 10000 (1997).
http://dx.doi.org/10.1021/jp972549z
117.
117. L. J. Larson, M. Kuno, and F. M. Tao, J. Chem. Phys. 112(20), 8830 (2000).
http://dx.doi.org/10.1063/1.481532
118.
118. A. F. Voegele, C. S. Tautermann, T. Loerting, A. Hallbrucker, E. Mayer, and K. R. Lieddl, Chem. Eur. J. 8(24), 5644 (2002).
http://dx.doi.org/10.1002/1521-3765(20021216)8:24<5644::AID-CHEM5644>3.0.CO;2-9
119.
119. S. Bruti, G. De Maria, G. Cerri, A. Giovannelli, B. Brunetti, P. Cafarelli, E. Semprin, V. Barbarossa, and A. Ceroli, Ind. Eng. Chem. Res. 46, 6393 (2007).
http://dx.doi.org/10.1021/ie070245l
120.
120. H. G. Kjaergaard, J. R. Lane, A. L. Garden, D. P. Schofield, and T. W. Robinson, Adv. Quantum Chem. 55, 137 (2008).
http://dx.doi.org/10.1016/S0065-3276(07)00208-0
121.
121. A. F. Tuck, D. J. Donaldson, M. H. Hitchman, E. C. Richard, H. Tervahattu, V. Vaida, and J. C. Wilson, Clim. Change 90(3), 315 (2008).
http://dx.doi.org/10.1007/s10584-008-9411-3
122.
122. M. J. Mills, O. B. Toon, and S. Solomon, Geophys. Res. Lett. 26(8), 1133 (1999).
http://dx.doi.org/10.1029/1999GL900187
123.
123. M. J. Mills, O. B. Toon, and G. E. Thomas, J. Geophys. Res. 110(D24), D24208 (2005).
http://dx.doi.org/10.1029/2005JD006242
124.
124. M. J. Mills, O. B. Toon, V. Vaida, P. E. Hintze, H. G. Kjaergaard, D. P. Schofield, and T. W. Robinson, J. Geophys. Res., [Atmos.] 110, D08201 (2005).
http://dx.doi.org/10.1029/2004JD005519
125.
125. X. Zhang, M. C. Liang, F. Montmessin, J. L. Bertaux, C. Parkinson, and Y. L. Yung, Nat. Geosci. 3(12), 834 (2010).
http://dx.doi.org/10.1038/ngeo989
126.
126. M. Sipila, T. Brendt, T. Petaja, D. Brus, J. Vanhanen, F. Stratmann, J. Patokoski, R. L. Mauldin III, A.-P. Hyvarinen, H. Lihavainen, and M. Kulmala, Science 327, 1243 (2010).
http://dx.doi.org/10.1126/science.1180315
127.
127. H. Matsubara, T. Ebisuhaki, and K. Yasuoka, J. Chem. Phys. 130, 104705 (2009).
http://dx.doi.org/10.1063/1.3082079
128.
128. J. A. Phillips, M. Canagaratna, H. Goodfriend, and K. R. Leopold, J. Phys. Chem. 99(2), 501 (1995).
http://dx.doi.org/10.1021/j100002a008
129.
129. J. M. Standard, I. S. Buckner, and D. H. Pulsifer, J. Mol. Struct.: THEOCHEM 673(1–3), 1 (2004).
http://dx.doi.org/10.1016/j.theochem.2003.11.043
130.
130. H. Fliegl and A. Gloss, J. Chem. Phys. 125, Art. No. 054312 (2006).
http://dx.doi.org/10.1063/1.2234372
131.
131. D. L. Fiacco, S. W. Hunt, and K. R. Leopold, J. Am. Chem. Soc. 124(16), 4504 (2002).
http://dx.doi.org/10.1021/ja012724w
132.
132. A. Givan, A. Loewenschuss, C. J. Nielsen, and M. Rozenberg, J. Mol. Struct. 830(1–3), 21 (2007).
http://dx.doi.org/10.1016/j.molstruc.2006.06.027
133.
133. A. Kakizaki, H. Motegi, T. Yoshikawa, T. Takayanagi, M. Shiga, and M. Tachikawa, J. Mol. Struct.: THEOCHEM 901(1–3), 18 (2009).
http://dx.doi.org/10.1016/j.theochem.2009.01.022
134.
134. B. N. Ida, P. S. Fudacz, D. H. Pulsifer, and J. M. Standard, J. Phys. Chem. A 110(17), 5831 (2006).
http://dx.doi.org/10.1021/jp0545905
135.
135. T. Loertig and K. R. Liedl, Proc. Natl. Acad. Sci. U.S.A. 97(16), 8874 (2000).
http://dx.doi.org/10.1073/pnas.97.16.8874
136.
136. R. Hofmann-Sievert and A. W. J. Castleman, J. Phys. Chem. 88, 3329 (1984).
http://dx.doi.org/10.1021/j150659a038
137.
137. S. Wolfe, C.-K. Kim, K. Yang, N. Weinberg, and Z. Shi, J. Am. Chem. Soc. 117, 4240 (1995).
http://dx.doi.org/10.1021/ja00120a005
138.
138. N. Matsubayasi, S. Morooka, M. Nakahara, and H. Takahashi, J. Mol. Liq. 134(1–3), 58 (2007).
http://dx.doi.org/10.1016/j.molliq.2006.12.002
139.
139. M. Mugnai, G. Cardini, V. Schettino, and C. J. Nielsen, Mol. Phys. 105, 2203 (2007).
http://dx.doi.org/10.1080/00268970701513864
140.
140. M. Mucha and Z. Mielke, J. Phys. Chem. A 111, 2398 (2007).
http://dx.doi.org/10.1021/jp066685s
141.
141. M. Lewis and R. Glaser, J. Phys. Chem. A 107, 6814 (2003).
http://dx.doi.org/10.1021/jp034764n
142.
142. C. Pirim and L. Krim, Chem. Phys. 380(1–3), 67 (2011).
http://dx.doi.org/10.1016/j.chemphys.2010.12.008
143.
143. M. Lewis and R. Glaser, Chem. Eur. J. 8(8), 1934 (2002).
http://dx.doi.org/10.1002/1521-3765(20020415)8:8<1934::AID-CHEM1934>3.0.CO;2-0
144.
144. Y. Miller, G. M. Chaban, and R. B. Gerber, J. Phys. Chem. A 109(29), 6565 (2005).
http://dx.doi.org/10.1021/jp058110l
145.
145. B. M. Elliott, R. A. Relph, J. R. Roscioli, J. C. Bopp, G. H. Gardenier, T. L. Guasco, and M. A. Johnson, J. Chem. Phys. 129(9), 094303 (2008).
http://dx.doi.org/10.1063/1.2966002
146.
146. J. R. Roscioli, L. R. McCunn, and M. A. Johnson, Science 316(5822), 249 (2007).
http://dx.doi.org/10.1126/science.1138962
147.
147. T. Pankewitz, A. Lagutschenkov, G. Niedner-Schatteburg, S. S. Xantheas, and Y. T. Lee, J. Chem. Phys. 126(7), 074307 (2007).
http://dx.doi.org/10.1063/1.2435352
148.
148. G. E. Douberly, R. S. Walters, J. Cui, K. D. Jordan, and M. A. Duncan, J. Phys. Chem. A 114(13), 4570 (2010).
http://dx.doi.org/10.1021/jp100778s
149.
149. J. M. Headrick, E. G. Diken, R. S. Walters, N. I. Hammer, R. A. Christie, J. Cui, E. M. Myshakin, M. A. Duncan, M. A. Johnson, and K. D. Jordan, Science 308, 1765 (2005).
http://dx.doi.org/10.1126/science.1113094
150.
150. N. I. Hammer, J. R. Roscioli, J. C. Bopp, J. M. Headrick, and M. A. Johnson, J. Chem. Phys. 123(24), Art. Nr. 244311 (2005).
http://dx.doi.org/10.1063/1.2134701
151.
151. K. R. Leopold, Annu. Rev. Phys. Chem. 62, 327 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103409
152.
152. G. M. Chaban, R. B. Gerber, and K. C. Janda, J. Phys. Chem. A 105, 8323 (2001).
http://dx.doi.org/10.1021/jp011567k
153.
153. Y. Miller, G. M. Chaban, and R. B. Gerber, Chem. Phys. 313(1–3), 213 (2005).
http://dx.doi.org/10.1016/j.chemphys.2005.01.012
154.
154. A. B. McCoy, X. C. Huang, S. Carter, and J. M. Bowman, J. Chem. Phys. 123(6), 064317 (2005).
http://dx.doi.org/10.1063/1.2001654
155.
155. A. B. McCoy, E. G. Diken, and M. A. Johnson, J. Phys. Chem. A 113(26), 7346 (2009).
http://dx.doi.org/10.1021/jp811352c
156.
156. S. S. Xantheas, Int. Rev. Phys. Chem. 25, 719 (2006).
http://dx.doi.org/10.1080/01442350600922564
157.
157. J. E. Del Bene and M. J. T. Jordan, Int. J. Phys. Chem. 18, 119 (1999).
http://dx.doi.org/10.1080/014423599230026
158.
158. Y. K. Choe, E. Tsuchida, and T. Ikeshoji, Int. J. Quantum Chem. 109(9), 1984 (2009).
http://dx.doi.org/10.1002/qua.22031
159.
159. S. S. Xantheas and J. T. H. Dunning, J. Phys. Chem. 96, 7507 (1992).
http://dx.doi.org/10.1021/j100198a007
160.
160. X. Q. Sun, S. Yoo, S. S. Xantheas, and L. X. Dang, Chem. Phys. Lett. 481(1–3), 9 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.09.004
161.
161. X. B. Wang, K. Kovalski, L. S. Wang, and S. S. Xantheas, J. Chem. Phys. 132(12), Art. Nr. 124306 (2010).
http://dx.doi.org/10.1063/1.3360306
162.
162. T. Loerting and K. R. Liedl, J. Phys. Chem. A 105(21), 5137 (2001).
http://dx.doi.org/10.1021/jp0038862
163.
163. Y. Miller, B. J. Finlayson-Pitts, and R. B. Gerber, J. Am. Chem. Soc. 131(34), 12180 (2009).
http://dx.doi.org/10.1021/ja900350g
164.
164. K. R. Siefermann and B. Abel, Science 327(5963), 280 (2010).
http://dx.doi.org/10.1126/science.1184555
165.
165. R. A. Relph, T. L. Guasco, B. M. Elliott, M. Z. Kamrath, A. B. McCoy, R. P. Steele, D. P. Schofield, K. D. Jordan, A. A. Viggiano, E. E. Ferguson, and M. A. Johnson, Science 327(5963), 308 (2010).
http://dx.doi.org/10.1126/science.1177118
166.
166. C. J. Mundy, I. F. W. Kuo, M. E. Tuckerman, H. S. Lee, and D. J. Tobias, Chem. Phys. Lett. 481(1–3), 28 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.09.003
167.
167. A. D. Hammerich and V. Buch, J. Chem. Phys. 128(11), Art. Nr. 111101 (2008).
http://dx.doi.org/10.1063/1.2889949
168.
168. S. S. Xantheas and G. A. Voth, J. Phys. Chem. B 113(13), 3997 (2009).
http://dx.doi.org/10.1021/jp900202a
169.
169. Y. Miller, J. L. Thomas, D. D. Kemp, B. J. Finlayson-Pitts, M. S. Gordon, D. J. Tobias, and R. B. Gerber, J. Phys. Chem. A 113(46), 12805 (2009).
http://dx.doi.org/10.1021/jp9070339
170.
170. A. Krepelova, J. Newberg, T. Huthwelker, H. Bluhm, and M. Ammann, Phys. Chem. Chem. Phys. 12(31), 8870 (2010).
http://dx.doi.org/10.1039/c0cp00359j
171.
171. T. H. Bertram, J. A. Thornton, T. P. Riedel, A. M. Middlebrook, R. Bahreini, T. S. Bates, P. K. Quinn, and D. J. Coffman, Geophys. Res. Lett. 36, L19803 (2009).
http://dx.doi.org/10.1029/2009GL040248
172.
172. D. Ardura and D. J. Donaldson, Phys. Chem. Chem. Phys. 11, 857 (2009).
http://dx.doi.org/10.1039/b812070f
173.
173. S. Enami, M. R. Hoffmann, and A. J. Colussi, J. Phys. Chem. A 114(18), 5817 (2010).
http://dx.doi.org/10.1021/jp1019729
174.
174. S. M. Brastad, D. R. Albert, M. W. Huang, and G. M. Nathanson, J. Phys. Chem. A 113(26), 7422 (2009).
http://dx.doi.org/10.1021/jp900232v
175.
175. T. Bartels-Rausch, M. Brigante, Y. F. Elshorbany, M. Ammann, B. D’Anna, C. George, K. Stemmler, M. Ndour, and J. Kleffmann, Atmos. Environ. 44(40), 5443 (2010).
http://dx.doi.org/10.1016/j.atmosenv.2009.12.025
176.
176. X. K. Chen, B. Minofar, P. Jungwirth, and J. C. Allen, J. Phys. Chem. B 114(47), 15546 (2010).
http://dx.doi.org/10.1021/jp1078339
177.
177. J. L. Thomas, M. Roeselova, L. X. Dang, and D. J. Tobias, J. Phys. Chem. A 111(16), 3091 (2007).
http://dx.doi.org/10.1021/jp0683972
178.
178. V. Buch, T. Tarbuck, G. L. Richmond, H. Groenzin, I. Li, and M. J. Shultz, J. Chem. Phys. 127(20), 204710 (2007).
http://dx.doi.org/10.1063/1.2790437
179.
179. H. Groenzin, I. Li, V. Buch, and M. J. Shultz, J. Chem. Phys. 127(21), 214502 (2007).
http://dx.doi.org/10.1063/1.2801642
180.
180. S. Baldelli, C. Schnitzer, and M. J. Shultz, J. Chem. Phys. 108(23), 9817 (1998).
http://dx.doi.org/10.1063/1.476456
181.
181. R. Bianco, W. H. Thompson, A. Morita, and J. T. Hynes, J. Phys. Chem. A 105(13), 3132 (2001).
http://dx.doi.org/10.1021/jp002599v
182.
182. A. Stirling and I. Papai, J. Phys. Chem. B 114, 16854 (2010).
http://dx.doi.org/10.1021/jp1099909
183.
183. S. Z. Wang, R. Bianco, and J. T. Hynes, J. Phys. Chem. A 113(7), 1295 (2009).
http://dx.doi.org/10.1021/jp808533y
184.
184. R. Bianco, S. Z. Wang, and J. T. Hynes, J. Phys. Chem. A 111(43), 11033 (2007).
http://dx.doi.org/10.1021/jp075054a
185.
185. Y. Miller and R. B. Gerber, Phys. Chem. Chem. Phys. 10(8), 1091 (2008).
http://dx.doi.org/10.1039/b717338p
186.
186. B. Winter, M. Faubel, R. Vacha, and P. Jungwirth, Chem. Phys. Lett. 474(4–6), 241 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.04.053
187.
187. D. M. Chipman, J. Phys. Chem. A 115(7), 1161 (2011).
http://dx.doi.org/10.1021/jp110238v
188.
188. S. Du, J. S. Francisco, G. K. Schenter, and B. C. Garrett, J. Am. Chem. Soc. 131, 14778 (2009).
http://dx.doi.org/10.1021/ja9033186
189.
189. M. A. Kamboures, S. A. Nizkorodov, and R. B. Gerber, Proc. Natl. Acad. Sci. U.S.A. 107(15), 6600 (2010).
http://dx.doi.org/10.1073/pnas.0907922106
190.
190. T. F. Kahan and D. J. Donaldson, J. Phys. Chem. A 111(7), 1277 (2007).
http://dx.doi.org/10.1021/jp066660t
191.
191. P. K. Mogili, P. D. Kleiber, M. A. Young, and V. H. Grassian, J. Phys. Chem. A 110, 13799 (2006).
http://dx.doi.org/10.1021/jp063620g
192.
192. J. Baltrusaitis, J. Schuttlefield, E. Zeiter, J. Jensen, and V. H. Grassian, J. Phys. Chem. C 111, 14870 (2007).
http://dx.doi.org/10.1021/jp074677l
193.
193. A. L. Goodman, E. B. Bernard, and V. H. Grassian, J. Phys. Chem. A 105(26), 6443 (2001).
http://dx.doi.org/10.1021/jp003722l
194.
194. H. A. Al-Abadleh, H. A. Al-Hosney, and V. H. Grassian, J. Mol. Catal. A: Chem. 228, 47 (2005).
http://dx.doi.org/10.1016/j.molcata.2004.09.059
195.
195. Y. Liu, E. R. Gibson, J. P. Cain, H. Wang, V. H. Grassian, and A. Laskin, J. Phys. Chem. A 112, 1561 (2008).
http://dx.doi.org/10.1021/jp076169h
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/2/10.1063/1.3608919
Loading
/content/aip/journal/jcp/135/2/10.1063/1.3608919
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/2/10.1063/1.3608919
2011-07-14
2016-12-06

Abstract

The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water.Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/2/1.3608919.html;jsessionid=K3g9kxAz1jtYuV-P50iOSOhU.x-aip-live-03?itemId=/content/aip/journal/jcp/135/2/10.1063/1.3608919&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/2/10.1063/1.3608919&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/2/10.1063/1.3608919'
Right1,Right2,Right3,