1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Communication: Length scale dependent oil-water energy fluctuations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jcp/135/20/10.1063/1.3664604
1.
1. K. Lum, D. Chandler, and J. D. Weeks, J. Phys. Chem. B 103, 4570 (1999).
http://dx.doi.org/10.1021/jp984327m
2.
2. D. Chandler, Nature (London) 437, 640 (2005).
http://dx.doi.org/10.1038/nature04162
3.
3. S. N. Jamadagni, R. Godawat, and S. Garde, in Annual Reviews of Chemical and Biomolecular Engineering, edited by J. M. Prausnitz (Annual Reviews, Palo Alto, 2011), Vol. 2, pp. 147171.
4.
4. C. A. Cerdeirina, P. G. Debenedetti, P. J. Rossky, and N. Giovambattista, J. Phys. Chem. Lett. 2, 1000 (2011).
http://dx.doi.org/10.1021/jz200319g
5.
5. R. Underwood, J. Tomlinson-Phillips, and D. Ben-Amotz, J. Phys. Chem. B 114, 8646 (2010).
http://dx.doi.org/10.1021/jp912089q
6.
6. S. Sarupria and S. Garde, Phys. Rev. Lett. 103, 037803 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.037803
7.
7. M. V. Athawale, S. N. Jamadagni, and S. Garde, J. Chem. Phys. 131, 115102 (2009).
http://dx.doi.org/10.1063/1.3227031
8.
8. B. J. Berne, J. D. Weeks, and R. Zhou, Annu. Rev. Phys. Chem. 60, 85 (2009).
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104445
9.
9. A. P. Willard and D. Chandler, J. Phys. Chem. B 112, 6187 (2008).
http://dx.doi.org/10.1021/jp077186+
10.
10. X. Y. Zhang, Y. X. Zhu, and S. Granick, Science 295, 663 (2002).
http://dx.doi.org/10.1126/science.1066141
11.
11. D. Ben-Amotz, F. O. Raineri, and G. Stell, J. Phys. Chem. B 109, 6866 (2005).
http://dx.doi.org/10.1021/jp045090z
12.
12. D. Ben-Amotz and J. M. Honig, J. Chem. Phys. 118, 5932 (2003).
http://dx.doi.org/10.1063/1.1557412
13.
13. D. Ben-Amotz and J. M. Honig, Phys. Rev. Lett. 96, 020602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.020602
14.
14. L. R. Pratt and D. Chandler, J. Chem. Phys. 67, 3683 (1977).
http://dx.doi.org/10.1063/1.435308
15.
15. H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.159
16.
16. D. Ben-Amotz, J. Chem. Phys. 123, 184504 (2005).
http://dx.doi.org/10.1063/1.2121648
17.
17. D. N. LeBard and D. V. Matyushov, Phys. Chem. Chem. Phys. 12, 15335 (2010).
http://dx.doi.org/10.1039/c0cp01004a
18.
18. J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
http://dx.doi.org/10.1063/1.1749657
19.
19. B. Widom, J. Phys. Chem. 86, 869 (1982).
http://dx.doi.org/10.1021/j100395a005
20.
20. D. Ben-Amotz and R. Underwood, Acc. Chem. Res. 41, 957 (2008).
http://dx.doi.org/10.1021/ar7001478
21.
21. D. Huang and D. Chandler, J. Phys. Chem. B 106, 2047 (2002).
http://dx.doi.org/10.1021/jp013289v
22.
22. D. Chandler, J. Weeks, and H. Andersen, Science 220, 787 (1983).
http://dx.doi.org/10.1126/science.220.4599.787
23.
23. D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. Mark, and H. Berendsen, J. Comput. Chem. 26, 1701 (2005).
http://dx.doi.org/10.1002/jcc.20291
24.
24. T. L. Beck, J. Stat. Phys. 145, 335 (2011).
http://dx.doi.org/10.1007/s10955-011-0298-4
25.
25. A. Isihara, J. Phys. A: Gen. Phys. 1, 539 (1968).
http://dx.doi.org/10.1088/0305-4470/1/5/305
26.
26. F. O. Raineri, G. Stell, and D. Ben-Amotz, Mol. Phys. 103, 3209 (2005).
http://dx.doi.org/10.1080/00268970500298980
27.
27. D. V. Matyushov, J. Chem. Phys. 115, 8933 (2001).
http://dx.doi.org/10.1063/1.1410116
28.
28. J. A. Barker and D. Henderson, J. Chem. Phys. 47, 2856 (1967).
http://dx.doi.org/10.1063/1.1712308
29.
29. J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967).
http://dx.doi.org/10.1063/1.1701689
30.
30. C. Bennett, J. Comput. Phys. 22, 245 (1976).
http://dx.doi.org/10.1016/0021-9991(76)90078-4
31.
31. G. Crooks, Phys. Rev. E 60, 2721 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.2721
32.
32. A. Pohorille, C. Jarzynski, and C. Chipot, J. Phys. Chem. B 114, 10235 (2010).
http://dx.doi.org/10.1021/jp102971x
33.
33. H. Acharya, S. Vembanur, S. Jamadagni, and S. Garde, Faraday Discuss. 146, 353 (2010).
http://dx.doi.org/10.1039/b927019a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/20/10.1063/1.3664604
Loading
/content/aip/journal/jcp/135/20/10.1063/1.3664604
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/20/10.1063/1.3664604
2011-11-23
2014-08-01

Abstract

Interfacial fluctuations in the cohesive (van der Waals) interactionenergy of spherical oil-drops with water provide evidence of a length scale dependent transition from linear to non-linear response behavior. For sub-nanometer oil-drop sizes, energy fluctuations are found to be independent of the van der Waals coupling strength, while nanometer (and larger) size oil drops experience highly non-linear energy fluctuations. The latter behavior is linked to enhanced hydrophobic density fluctuations and the emergence of entropic contributions to oil-water cohesive interactionfree energies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/20/1.3664604.html;jsessionid=f97ealkfmb7s6.x-aip-live-02?itemId=/content/aip/journal/jcp/135/20/10.1063/1.3664604&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Communication: Length scale dependent oil-water energy fluctuations
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/20/10.1063/1.3664604
10.1063/1.3664604
SEARCH_EXPAND_ITEM