Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/135/20/10.1063/1.3664763
1.
1. P. Pechukas, Phys. Rev. 181, 174 (1969).
http://dx.doi.org/10.1103/PhysRev.181.174
2.
2. J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
http://dx.doi.org/10.1063/1.459170
3.
3. J. Bader and B. Berne, J. Chem. Phys. 100, 8359 (1994).
http://dx.doi.org/10.1063/1.466780
4.
4. H. D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979);
http://dx.doi.org/10.1063/1.437910
4.G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997);
http://dx.doi.org/10.1103/PhysRevLett.78.578
4.G. Stock and M. Thoss, Phys. Rev. A 59, 64 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.64
5.
5. S. Bonella and D. F. Coker, J. Chem. Phys. 114, 7778 (2001);
http://dx.doi.org/10.1063/1.1366331
5.E. A. Coronado, J. Xing, and W. H. Miller, Chem. Phys. Lett. 349, 512 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01242-8
6.
6. G. Tao and W. H. Miller, J. Phys. Chem. Lett. 1, 891 (2010).
http://dx.doi.org/10.1021/jz1000825
7.
7. S. Bonella and D. F. Coker, J. Chem. Phys. 118, 4370 (2003);
http://dx.doi.org/10.1063/1.1542883
7.S. Bonella and D. F. Coker, J. Chem. Phys. 122, 194102 (2005).
http://dx.doi.org/10.1063/1.1896948
8.
8. N. Ananth, C. Venkataraman, and W. H. Miller, J. Chem. Phys. 127, 084114 (2007).
http://dx.doi.org/10.1063/1.2759932
9.
9. X. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. 109, 7064 (1998);
http://dx.doi.org/10.1063/1.477389
9.J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Chem. Phys. 119, 12179 (2003);
http://dx.doi.org/10.1063/1.1626631
9.Q. Shi and E. Geva, J. Chem. Phys. 118, 8173 (2003).
http://dx.doi.org/10.1063/1.1564814
10.
10. J. Vanicek, Phys. Rev. E 70, 055201R (2004).
http://dx.doi.org/10.1103/PhysRevE.70.055201
11.
11. N. Ananth and T. F. Miller III, J. Chem. Phys. 133, 234103 (2010);
http://dx.doi.org/10.1063/1.3511700
11.Z. Ma and D. F. Coker, J. Chem. Phys. 128, 244108 (2008).
http://dx.doi.org/10.1063/1.2944270
12.
12. U. Müller and G. Stock, J. Chem. Phys. 108, 7516 (1998).
http://dx.doi.org/10.1063/1.476184
13.
13. P. Huo and D. F. Coker, “Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation” (unpublished).
14.
14. E. R. Dunkel, S. Bonella, and D. F. Coker, J. Chem. Phys. 129, 114106 (2008).
http://dx.doi.org/10.1063/1.2976441
15.
15. P. Huo and D. F. Coker, J. Chem. Phys. 133, 184108 (2010).
http://dx.doi.org/10.1063/1.3498901
16.
16. A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. U.S.A. 106, 17255 (2009).
http://dx.doi.org/10.1073/pnas.0908989106
17.
17. J. Zhu, S. Kais, P. Rebentrost, and A. Aspuru-Guzik, J. Phys. Chem. B 115, 1531 (2011).
http://dx.doi.org/10.1021/jp109559p
18.
18. J. Strümpfer and K. Schulten, J. Chem. Phys. 131, 225101 (2009).
http://dx.doi.org/10.1063/1.3271348
19.
19. A. Nassimi, S. Bonella, and R. Kapral, J. Chem. Phys. 133, 134115 (2010).
http://dx.doi.org/10.1063/1.3480018
20.
20. A. Kelly and Y. M. Rhee, J. Phys. Chem. Lett. 2, 808 (2011).
http://dx.doi.org/10.1021/jz200059t
21.
21. X. Chen and R. J. Silbey, J. Phys. Chem. B 115, 5499 (2011).
http://dx.doi.org/10.1021/jp111068w
22.
22. A. Ishizaki and G. R. Fleming, J. Phys. Chem. B 115, 6227 (2011).
http://dx.doi.org/10.1021/jp112406h
23.
23. X. Chen and R. J. Silbey, J. Chem. Phys. 132, 204503 (2010).
http://dx.doi.org/10.1063/1.3435211
http://aip.metastore.ingenta.com/content/aip/journal/jcp/135/20/10.1063/1.3664763
Loading
/content/aip/journal/jcp/135/20/10.1063/1.3664763
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/135/20/10.1063/1.3664763
2011-11-23
2016-12-10

Abstract

An approach for treating dissipative, non-adiabatic quantum dynamics in general modelsystems at finite temperature based on linearizing the density matrix evolution in the forward-backward path difference for the environment degrees of freedom is presented. We demonstrate that the approach can capture both short time coherent quantum dynamics and long time thermal equilibration in an application to excitation energy transfer in a model photosynthetic light harvesting complex. Results are also presented for some nonadiabaticscatteringmodels which indicate that, even though the method is based on a “mean trajectory” like scheme, it can accurately capture electronic population branching through multiple avoided crossing regions and that the approach offers a robust and reliable way to treat quantum dynamical phenomena in a wide range of condensed phase applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/135/20/1.3664763.html;jsessionid=4vPEl3c4Gh5h_DeRtBiwh9Qx.x-aip-live-03?itemId=/content/aip/journal/jcp/135/20/10.1063/1.3664763&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/135/20/10.1063/1.3664763&pageURL=http://scitation.aip.org/content/aip/journal/jcp/135/20/10.1063/1.3664763'
Right1,Right2,Right3,